musings.ru

Триангуляция - что это такое? Триангуляция мобильного телефона в сотовой сети. Метод триангуляции

Триангуляционные сети в инженерно-геодезических работах используются в качестве основы для топографических съемок и раз-бивочных работ, а также для наблюдений за деформациями сооружений.

Для съемочных работ триангуляционная сеть позволяет сократить длины развиваемых на ее основе сетей сгущения и способствует уменьшению погрешностей в сетях низших разрядов и съемочных сетях. Выбор класса сети дня этой цели определяется в основном площадью съемки. Так, для крупнейших городов применяется триангуляция до 2-го класса включительно. В большинстве случаев исходным обоснованием для съемочных работ служит триангуляция 4-го класса. Триангуляция используется и для построения сетей сгущения 1-го и 2-го разрядов.

Для разбивочных работ триангуляция может служить непосредственной основой, с пунктов которой производится разбивка сооружений, или опорой для развития сетей низших разрядов, в свою очередь используемых для разбивки. Примером может служить триангуляция для строительства гидротехнических сооружений, тоннелей, мостов.

Из приведенных таблиц следует, что характеристики специальных триангуляций отличаются от государственных в основном длинами сторон, причем в сторону уменьшения. Это обстоятельство неизбежно приводит к повышению требований к отдельным измерительным операциям, таким как центрирование теодолита и визирных целей при угловых измерениях и т. п.

Особенностью разбивочной триангуляции является необходимость соблюдения точностных требований во взаимном положении смежных пунктов или пунктов, разделенных двумя-тремя сторонами. Это требование обусловлено тем, что с пунктов сети требуется вынести в натуру систему точек, как правило, принадлежащих единому сооружению или единому комплексу сооружений, связанных конструктивно или технологически.

Триангуляционные сети, предназначенные для наблюдений за плановыми смещениями сооружений, чаще всего применяются на крупных гидротехнических объектах. В основном они используются для измерения смещений недоступных точек и контроля устойчивости исходных опорных пунктов других построений. Характерной особенностью триангуляционных сетей для этого вида работ являются высокие требования к точности определения координат пунктов (2...5 мм) при небольших длинах сторон.

При развитии инженерно-геодезических сетей методом триангуляции наиболее типичными построениями являются: цепи треугольников (для линейно протяженных объектов), центральные системы (для городских и промышленных территорий), геодезические четырехугольники (для мостовых и гидротехнических сооружений), вставки пунктов в треугольники и небольшие сети из этих фигур. Возможны и комбинированные построения.

В сетях триангуляции треугольники стараются проектировать близкими к равносторонним; в особых случаях острые углы допускают до 20°, а тупые - до 140°. В свободных сетях для контроля масштаба сети необходимо иметь не менее двух непосредственно измеренных базисных сторон.

Уравнивание результатов измерений выполняют строгими способами.

При разработке проектов триангуляционных сетей расчет ожидаемой точности производят, как правило, на ЭВМ, используя различные программы.

Триангуляционную схему (рис. 1) условно можно разделить на три части: излучательный (или осветительный) канал, контролируемая поверхность, приёмный канал.

Рис. 1. Принципиальная схема триангуляционного измерителя: 1 - излучательный канал,
2 - контролируемая поверхность, 3 - приёмный канал.

Первая часть схемы – излучательный канал, который состоит из источника излучения и объектива, который формирует зондирующий пучок на контролируемой поверхности. В качестве источника излучения, как правило, используется лазерный диод. Распределение света, создаваемое такими источниками называется гауссовым (рис. 2, а).

Шириной d зондирующего пучка называется расстояние между точками профиля интенсивности на уровне Imax/e.

Перетяжкой гауссового пучка называется минимальная ширина пучка вдоль направления распространения. На рисунке 2, б перетяжка расположена в плоскости А. Очевидно, в этой плоскости интенсивность зондирующего пучка достигает максимального значения.

Рис. 2. а - распределение Гаусса (I – интенсивность, y – направление перпендикулярное распространению излучения), б - гауссовый пучок в продольном разрезе (z – направление распространения излучения).

Объектив состоит из одной или нескольких оптических линз. Относительное положение объектива и лазерного диода определяет настройку излучательного канала. Чтобы настроить лазерный модуль необходимо выставить перетяжку в центр диапазона измерения и отцентрировать зондирующий пучок.

Результатом хорошей настройки является отцентрированный пучок, ширина и интенсивность которого симметрично изменяются относительно центра диапазона измерения.

Вторая неотъемлемая часть триангуляционной измерительной схемы – это контролируемая поверхность. Каждая поверхность имеет свойство отражать или рассеивать падающее излучение. Рассеяние излучения поверхностью контролируемого объекта используется в триангуляции как физическая основа для получения информации о расстоянии до этой поверхности.

Задача триангуляционного датчика – измерить расстояние от выбранной точки на оси зондирующего пучка до физической точки поверхности с высокой точностью. Любая контролируемая поверхность характеризуется неровностью или степенью своей гладкости – шероховатостью Rz. Как правило, требуемая точность измерения обратно пропорциональна шероховатости контролируемой поверхности. Так, шероховатость поверхности кристаллов микроэлектроники, а значит и измеряемое расстояние до них, имеют масштаб от нескольких микрометров. А, например, в геодезической отрасли необходимо определять расстояния с точностью до сотен и тысяч метров.

Основу промышленного размерного контроля составляет определение параметров металлических поверхностей. Требуемая при этом точность контроля составляет от нескольких (атомная промышленность) до сотен мкм (железнодорожная отрасль).

Каждая поверхность имеет также свойство отражать или рассеивать падающее излучение. Рассеяние излучения поверхностью контролируемого объекта используется в триангуляции как физическая основа для получения информации о расстоянии до этой поверхности. Поэтому, контролируемая поверхность является неотъемлемой частью триангуляционной измерительной схемы.

Третья часть схемы триангуляционного измерителя – приемный канал, который состоит из проецирующего объектива и фотоприемника.

Проецирующий объектив формирует изображение зондирующего пятна в плоскости фотоприемника. Чем больше диаметр D объектива, тем выше его светосила. Иначе говоря, тем интенсивнее и качественнее строится изображение пятна.

В зависимости от конкретной реализации, для регистрации сформированного изображения качестве приемника используют либо фотодиодную линейку, либо позиционно-чувствительный приемник.

Схема триангуляционного измерителя, приведенная на рисунке 1, работает следующем образом. Излучательный канал 1 формирует изображение светового пятна на контролируемой поверхности 2. Далее рассеянный контролируемой поверхностью свет попадает в приемный канал 3. Таким образом, в плоскости фотоприемника создается изображение освещенного участка контролируемой поверхности (световое пятно). При смещении контролируемой поверхности на величину?z(рис. 1), световое пятно в плоскости фотоприемника смещается на величину?x. Зависимость смещения контролируемой поверхности?z от смещения светового пятна в плоскости фотоприемника?x, имеет следующий вид:

где - это расстояния от контролируемой поверхности 2 до проецирующего объектива приемного канала 3, и от проецирующего объектива до фотоприемника, притом, что контролируемая поверхность находится в центре диапазона измерений смещений, соответственно.

Значение слова "Триангуляция (в геодезии)" в Большой Советской Энциклопедии

Триангуляция (от лат. triangulum — треугольник), один из методов создания сети опорных геодезических пунктов и сама сеть, созданная этим методом; состоит в построении рядов или сетей примыкающих друг к другу треугольников и в определении положения их вершин в избранной системе координат. В каждом треугольнике измеряют все три угла, а одну из его сторон определяют из вычислений путём последовательного решения предыдущих треугольников, начиная от того из них, в котором одна из его сторон получена из измерений. Если сторона треугольника получена из непосредственных измерений, то она называется базисной стороной Триангуляция (в геодезии) В прошлом вместо базисной стороны непосредственно измеряли короткую линию, называемую базисом, и от неё путём тригонометрических вычислений через особую сеть треугольников переходили к стороне треугольника Триангуляция (в геодезии) Эту сторону Триангуляция (в геодезии) обычно называют выходной стороной, а сеть треугольников, через которые она вычислена,— базисной сетью. В рядах или сетях Триангуляция (в геодезии) для контроля и повышения их точности измеряют большее число базисов или базисных сторон, чем это минимально необходимо.

Принято считать, что метод Триангуляция (в геодезии) изобрёл и впервые применил В. Снеллиус в 1615—17 при прокладке ряда треугольников в Нидерландах для градусных измерений . Работы по применению метода Триангуляция (в геодезии) для топографических съёмок в дореволюционной России начались на рубеже 18—19 вв. К началу 20 в. метод Триангуляция (в геодезии) получил повсеместное распространение.

Триангуляция (в геодезии) имеет большое научное и практическое значение. Она служит для: определения фигуры и размеров Земли методом градусных измерений; изучения горизонтальных движений земной коры; обоснования топографических съёмок в различных масштабах и целях; обоснования различных геодезических работ при изыскании, проектировании и строительстве крупных инженерных сооружений, при планировке и строительстве городов и т.д.

При построении Триангуляция (в геодезии) исходят из принципа перехода от общего к частному, от крупных треугольников к более мелким. В связи с этим Триангуляция (в геодезии) подразделяется на классы, отличающиеся точностью измерений и последовательностью их построения. В малых по территории странах Триангуляция (в геодезии) высшего класса строят в виде сплошных сетей треугольников. В государствах с большой территорией (СССР, Канада, КНР, США и др.) Триангуляция (в геодезии) строят по некоторой схеме и программе. Наиболее стройная схема и программа построения Триангуляция (в геодезии) применяется в СССР.

Государственная Триангуляция (в геодезии) в СССР делится на 4 класса (рис. ). Государственная Триангуляция (в геодезии) СССР 1-го класса строится в виде рядов треугольников со сторонами 20—25 км , расположенных примерно вдоль меридианов и параллелей и образующих полигоны с периметром 800—1000 км . Углы треугольников в этих рядах измеряют высокоточными теодолитами , с погрешностью не более ± 0,7" . В местах пересечения рядов Триангуляция (в геодезии) 1-го класса измеряют базисы при помощи мерных проволок (см. Базисный прибор ), причём погрешность измерения базиса не превышает 1: 1000000 доли его длины, а выходные стороны базисных сетей определяются с погрешностью около 1: 300 000. После изобретения высокоточных электрооптических дальномеров стали измерять непосредственно базисные стороны с погрешностью не более 1: 400 000. Пространства внутри полигонов Триангуляция (в геодезии) 1-го класса покрывают сплошными сетями треугольников 2-го класса со сторонами около 10—20 км , причём углы в них измеряют с той же точностью, как и в Триангуляция (в геодезии) 1-го класса. В сплошной сети Триангуляция (в геодезии) 2-го класса внутри полигона 1-го класса измеряется также базисная сторона с указанной выше точностью. На концах каждой базисной стороны в Триангуляция (в геодезии) 1-го и 2-го классов выполняют астрономические определения широты и долготы с погрешностью не более ± 0,4" , а также азимута с погрешностью около ± 0,5" . Кроме того, астрономические определения широты и долготы выполняют и на промежуточных пунктах рядов Триангуляция (в геодезии) 1-го класса через каждые примерно 100 км , а по некоторым особо выделенным рядам и значительно чаще.

На основе рядов и сетей Триангуляция (в геодезии) 1-го и 2-го классов определяют пункты Триангуляция (в геодезии) 3-го и 4-го классов, причём их густота зависит от масштаба топографической съёмки. Например, при масштабе съёмки 1: 5000 один пункт Триангуляция (в геодезии) должен приходиться на каждые 20—30 км 2 . В Триангуляция (в геодезии) 3-го и 4-го классов погрешности измерения углов не превышают соответственно 1,5" и 2,0" .

В практике СССР допускается вместо Триангуляция (в геодезии) применять метод полигонометрии . При этом ставится условие, чтобы при построении опорной геодезической сети тем и др. методом достигалась одинаковая точность определения положения пунктов земной поверхности.

Вершины треугольников Триангуляция (в геодезии) обозначаются на местности деревянными или металлическими вышками высотой от 6 до 55 м в зависимости от условий местности (см. Сигнал геодезический ). Пункты Триангуляция (в геодезии) в целях долговременной их сохранности на местности закрепляются закладкой в грунт особых устройств в виде металлических труб или бетонных монолитов с вделанными в них металлическими марками (см. Центр геодезический ), фиксирующими положение точек, для которых даются координаты в соответствующих каталогах.

Координаты пунктов Триангуляция (в геодезии) определяют из математической обработки рядов или сетей Триангуляция (в геодезии) При этом реальную Землю заменяют некоторым референц-эллипсоидом , на поверхность которого приводят результаты измерения углов и базисных сторон Триангуляция (в геодезии) В СССР принят референц-эллипсоид Красовского (см. Красовского эллипсоид ). Построение Триангуляция (в геодезии) и её математическая обработка приводят к созданию на всей территории страны единой системы координат, позволяющей ставить топографо-геодезические работы в разных частях страны одновременно и независимо друг от друга. При этом обеспечивается соединение этих работ в одно целое и создание единой общегосударственной топографической карты страны в установленном масштабе.

Лит.: Красовский Ф. Н., Данилов В. В., Руководство по высшей геодезии, 2 изд., ч. 1, в. 1—2, М., 1938—39; Инструкция о построении государственной геодезической сети СССР, 2 изд., М., 1966.

Л. А. Изотов.

Дуга́ Стру́ве , названная по имени создателя — российского астронома Фридриха Георга Вильгельма Струве (Василия Яковлевича Струве) — сеть из 265 триангуляционных пунктов, представлявших собой заложенные в землю каменные кубы с длиной ребра 2 метра, протяжённостью более 2820 километров. Создавалась с целью определения параметров Земли, её формы и размера.

Геодезический пункт

Геодези́ческий пункт — точка, особым образом закреплённая на местности (в земле, реже — на здании или другом искусственном сооружении), и являющаяся носителем координат, определённых геодезическими методами. Геодезический пункт является элементом геодезической сети, которая служит геодезической основой топографической съёмки местности и ряда других геодезических работ, а по назначению подразделяется на плановую (тригонометрическую), высотную (нивелирную) и гравиметрическую. Плановая сеть 1 класса, элементы которой определены также астрономическими и гравиметрическими методами, называется астрономо-геодезической.

В последнее время проводится работа по созданию новой — спутниковой — геодезической сети (прежде всего — в промышленно развитых и обжитых районах), с закреплением на местности пунктами спутниковой геодезической сети, координаты которых определяются относительными методами космической геодезии. По возможности такие пункты совмещаются с действующими пунктами старых геодезических сетей, а создаваемая спутниковая сеть подлежит жесткой привязке к существующим геодезическим пунктам. Кроме этого к геодезическим пунктам относятся и пункты специального предназначения. Это пункты лазерной локации спутников, сверхдлиннобазисной радиоинтерферометрии, пункты службы вращения Земли и некоторые другие.

Поэтому геодезические пункты, принадлежащие к этим сетям, имеют различное предназначение.

Пункты плановой геодезической сети являются носителями плановых координат которые определены в известной системе координат с заданной степенью точности, в результате геодезических измерений . Традиционными геодезическими методами определения координат плановых (тригонометрических)геодезических пунктов являются триангуляция (тогда такой пункт называется пунктом триангуляции или триангуляционным пунктом), полигонометрия (тогда такой пункт называется пунктом полигонометрии или полигонометрическим пунктом), трилатерация (тогда такой пункт называется трилатерационным пунктом), или их сочетание (тогда он называется пунктом линейно-угловой сети). Располагаются они, по возможности, на возвышенных местах (вершинах холмов, сопок, гор), чтобы обеспечить видимость на соседние пункты сети во всех направлениях. Пункты плановой геодезической сети также определены по высоте над уровнем моря, но точность определения по высоте ниже точности определения в плане, в результате технологических различий в методах определения.

Пункты высотной геодезической сети являются носителями высотных координат, определённых с большой точностью методом геометрического нивелирования. Поэтому такие пункты называют также нивелирными пунктами (центры нивелирных пунктов называют реперами ) . В плане они определены лишь приблизительно. Во взаимной видимости между нивелирными пунктами нет необходимости, а технология измерений требует расположения данных пунктов, по возможности, в равнинных местах (чаще всего — вдоль рек), поскольку с наличием перепада высот теряется точность определения. По этой причине, как правило, пункты тригонометрической сети не совпадают с пунктами нивелирования (нивелирными пунктами).

На пунктах гравиметрической сети производится определение уклонений силы тяжести. Параметры таких пунктов определяются с помощью специального прибора — гравиметра. Гравиметрические пункты также определены в плане и по высоте, с определённой степенью точности.

Каждый геодезический пункт закрепляется специальным геодезическим центром , к которому приводятся координаты геодезического пункта (у нивелирных пунктов геодезические центры именуются реперами или марками). (Пункты спутниковой сети и других специальных сетей закрепляются центрами или группами центров особой конструкции). Над центром пункта тригонометрической (плановой) сети сооружается геодезический знак — наземное сооружение (деревянное, металлическое, каменное или железобетонное), в виде тура, штатива, пирамиды геодезическая пирамида или сигнала геодезический сигнал , служащего для закрепления визирной цели, установки геодезического прибора, и являющегося площадкой для работы наблюдателя. Также служит для опознавания пункта на местности. На определённом расстоянии от тригонометрического пункта закладывается ориентирные пункты обращенные лицевой панелью на сам геодезический пункт, а также сооружается астрономический стоб (если на пункте проводятся астрономические определения). Кроме того, геодезический пункт имеет специальное внешнее оформление. Если это экономически выгодно, знак на пункте может сооружаться временным (разборным или перевозным).

На пунктах других геодезических сетей (высотной и гравиметрической) знак не сооружается, поскольку по технологии определений он не используется. В этом случае, для закрепления и опознавания пункта на местности служит опознавательный столб (металлический, железобетонный) с охранной табличкой, и специальное внешнее оформление пункта, определённое «Инструкцией по постройке геодезических знаков» (окопка канавами, создание каменных валов, насыпка кургана и т. д.).

Поэтому чаще всего именно плановый (тригонометрический) пункт с его крупным и приметным знаком, расположенным где-нибудь на возвышенности, ассоциируется у обывателя с понятием «геодезический пункт».

Каждый геодезический пункт Государственной геодезической сети имеет индивидуальный номер, нанесенный на марку центра и внесенный в специальный каталог. Кроме этого, каждому пункту плановой Государственной сети присваивается имя, которое заносится в соответствующие каталоги с указанием всех параметров пункта. Имена некоторых тригопунктов нанесены на топографическую карту рядом с их условными знаками.

Тригонометрический пункт

Материал из Википедии — свободной энциклопедии


Элемент тригонометрического знака геодезической сети первого класса Японии

Тригонометрический пункт , тригопункт (пункт триангуляции) — геодезический пункт , плановые координаты которого определены тригонометрическими методами.
Данный термин не является официальным. Это профессиональный собирательный термин в геодезии для отделения понятия планового геодезического пункта, определенного тригонометрическими методами, от высотного, астрономического и других, поскольку назначение последних иное.
Для определения координат могут использоваться способы триангуляции , полигонометрии,

Характерной и главной особенностью рассматриваемого периода развития геодезии были геодезические сети . Геодезическая сеть - это совокупность закрепленных на местности точек с определенными координатами . Они создавались в целях: 1) решения главной научной задачи – определение фигуры Земли и ее гравитационного поля ; 2)картографирования страны; 3)решения задач прикладной геодезии. Основным методом построения геодезических сетей стал появившийся в 16в. метод триангуляции , хотя этот метод был известен еще в глубокой древности (греческий математик Фалес использовал его для определения расстояния до корабля). Этот метод заключается в построении на местности треугольников, в которых измерялись углы и одна сторона. Вершины треугольников закрепляли специальными знаками. С начала это были одиночные треугольники , затем стали строить цепочки их и сплошные сети с измерением в них одного или нескольких базисов (сторон) и всех углов . Первое упоминание о методе триангуляции сделал Гемма Фризиус в 1546г. Он при реализации этого метода на большой территории применял прибор планиметр – модифицированную упрощенную астролябию с компасом, которая устанавливалась горизонтально на вертикальную подставку. Этот метод использовал Мартин Вальдземюллер, применив разработанный им в 1513г. прибор полиметрум, которым можно было измерять горизонтальные или вертикальные углы . Это был прототип современноготеодолита . Известный картограф Герард Меркатор (1512-1594), ученик Геммы Фризиуса, был одним из первых применивших метод триангуляции при съемках для получения точных карт территории Голландии в 1540г. Англичанин Кристофер Сакстон в течение 9 лет выполнял съемки Уэльса, в которых использовал триангуляционный метод Фризиуса. В 1596г. Раттикус издал труд по основам триангуляции. Итак, начало применения триангуляционного метода при съемках относится к первой половине 16в., а первым инструментом была приспособленная для этих целей астролябия. Разработкой, применением и совершенствованием метода занимались преимущественно математики, геометры, работавшие в университетах.

В 17в. наступил второй этап в формировании метода триангуляции и реализации его в трех направлениях: 1) как строго научной основы топографических съемок, 2) как средства распространения единой системы координат на территории страны, 3) как главного метода определения формы и размеров Земли. Распространению этого метода в 17в. способствовало внедрение и освоение в геодезии тригонометрии и логарифмов , изобретенных Непером в 1614г.

Вильгельм Шикхарт, на основе своего опыта по созданию опорной геодезической сети для топографической съемки Вюртенберга, в 1629г. опубликовал первый геодезический учебник на немецком языке «Краткое руководство по искусству съемки земель».

Примером всех 3-х направлений являются работы 4-х поколений геодезистов Кассини (Жан, Жак, Цезарь) во Франции, решивших с помощью построения сплошной сети триангуляции три главные задачи – создание точной карты Франции, распространение единой системы координат и получение размера Земли. Голландский математик Виллеброрд Снеллиус (1591-1626) проложил в 1615-1616гг. ряд триангуляции для решения задачи 3-го направления. В России считают Снеллиуса автором этого метода. Француз Жан Пикар (1620-1682) в 1669-1670гг., используя ряд триангуляции определил длину дуги парижского меридиана в один градус, равную 111,212км. (современная величина 111,18км).

Для определения высоты объекта и решения других задач применяли различные комбинации реек, например, описанную Леонардо да Винчи.

Астролябия в эту эпоху стала важнейшим прибором в навигации и геодезии. Для применения в практической геометрии астролябия была реконструирована в горизонтальное положение, в нее встроили компас, изменили и оформление. Круг астролябии имел 360 делений и каждое из них делили еще на 10 частей. Наименьшее деление круга равнялось 6’.

Для измерения углов кроме астролябии применяли квадрат и квадрант. Геометрический квадрат был модифицирован - в него включалась дуга квадранта. Квадранты в этот период были наиболее важными астрономическими инструментами. Их стали строить больших размеров и стационарного и меридианного типов. Европейцы упростили квадрант, встроили в него компас. Квадрант применялся главным образом для измерения вертикальных углов при определении превышений методом тригонометрического нивелирования, а также для определения времени по наблюдениям высот небесных светил. Для повышения точности отсчитывания долей деления на квадранте Педро Нониус (1492-1577) предложил специальное устройство – нониус . В дальнейшем нониус был преобразован П. Верньером в отсчетное устройство (описано в 1631г.) и стало называться верньер. Точность отсчитывания по верньеру возросла на порядок.

При проектировании сетей триангуляции должны соблюдаться требования, приведенные в табл.1

Таблица 1

Показатель Класс
Средняя длина стороны треугольника, км 20-25 7-20 5-8 2-5
Относительная ошибка базисной выходной стороны 1:400000 1:300000 1:200000 1:100000
Примерная относительная ошибка стороны в слабом месте 1:150000 1:200000 1:120000 1:70000
Наименьшее значение угла треугольника, градус 40 20 20 20
Допустимая невязка треугольника, угл. с 3 4 6 6
Средняя квадртическая ошибка угла по невязкам треугольника, угл. с 0,7 1 1,5 2,0
Средняя квадратическая ошибка взаимного положения смежных пунктов, м 0,15 0,06 0,06 0,06

3.1. Расчет количества знаков

При проектировании сети триангуляции 3 и 4 классов необходимо рассчитать количество пунктов отдельного класса.

Требуемая плотность геодезических пунктов при общегосударственном картографировании территории страны зависит от масштаба топографической съемки, методов ее выполнения, а также от методов создания съемочного геодезического обоснования.

Таблица 2

Между длинами сторон треугольников разных классов должны соблюдаться следующие приближенные соотношения:

s 1= s 1 s 2 =0,58s 1 s 3 =0,33s 1 s 4 =0,19s 1 . (1)

Если за исходную принять длину стороны в триангуляции 1 класса, равную в среднем S 1 = 23 км, то по формулам (1) получим следующие длины сторон треугольников в сетях триангуляции 2-4 классов (табл. 3).

Таблица 3

В реальных сетях триангуляции треугольники несколько отступают от равносторонней формы. Однако в среднем для обширной по размерам геодезической сети соотношения (1) длин сторон треугольников должны более или менее точно соблюдаться, в противном случае общее число пунктов в сети может оказаться неоправданно завышенным. Среднее число пунктов разных классов на любой площади Р картографируемой территории можно рассчитать по формулам

где - площадь, обслуживаемая одним пунктом -го класса (i =1,2,3,4).Результаты вычислений следует округлять до целого десятка. В качестве примера по этим формулам определим число пунктов 3-4 классов на площади Р = 200 км 2 при n 1 = 0, n 2 =2 .

Для триангуляции 3 класса:

Для триангуляции 4 класса:

Следовательно, на площади снимаемой территории Р=200 км 2 должны запроектировать 11 пунктов, то есть 2 пункта 2 класса, 2 пункта 3 класса и 7 пунктов 4 класса.

3.2. Построение триангуляционной сети

При разработке графического проекта сети особое внимание следует обращать на выбор местоположения каждого отдельного пункта. Все пункты государственной геодезической сети должны быть расположены на командных вершинах местности. Это необходимо для того, чтобы, во-первых, обеспечить взаимную видимость между смежными пунктами при минимальных высотах геодезических знаков, во-вторых, возможность развития в будущем сети в любом направлении. Длины сторон между смежными пунктами должны соответствовать требованиям инструкции. Во всех случаях геодезические пункты должны находиться в таких местах, где будет обеспечена сохранность их положения в плане и по высоте в течение длительного времени. Поскольку на постройку геодезических знаков расходуется в среднем 50-60 % всех затрат на создание сети, необходимо уделять самое серьезное внимание выбору мест для установки пунктов на местности с целью снижения их высоты.

При проектировании сетей триангуляции разных классов важное значение имеет обеспечение надежной привязки сетей более низкого класса к сетям более высокого класса.

Рис. 1. Схемы привязки геодезических сетей к сторонам (а) и пунктам (б) триангуляции высшего класса

Рис.2. Схемы построения сетей триангуляции

После того как все пункты будут нанесены на карту, их соединяют прямыми линиями. На отдельном листе вычерчивают схему запроектированной сети, на которую выносят названия пунктов, длины сторон в километрах, значения углов в треугольниках с точностью до градуса, высоты земной поверхности с точностью до метра. Углы измеряют транспортиром по топографической карте. Суммы углов в треугольниках должны равняться 180º, а в полюсе центральной системы 360º. Длины сторон измеряются линейкой. Под схемой приводятся условные обозначения исходных сторон, сторон триангуляции и пунктов сети.

3.3. Расчет высот знаков

На пунктах геодезической сети строят геодезические знаки такой высоты, чтобы визирные лучи при угловых и линейных измерениях проходили по каждому направлению на заданной минимальной высоте над препятствием, не касаясь его. Сначала определяют приближенные высоты знаков l 1 ’ и l 2 ’ для каждой пары смежных пунктов, а затем корректируют их и находят окончательные значения высот l 1 и l 2 . Приближенные высоты знаков l 1 ’ и l 2 ’ (рис.3) вычисляют по формулам

где h 1 и h 2 - превышения вершины препятствия в точке С (c учетом высоты леса) над основаниями первого и второго знаков соответственно; а- установленная действующей инструкцией допустимая высота происхождения визирного луча над препятствием; u 1 и u 2 - поправки за кривизну Земли и рефракцию.

Знаки при h 1 и h 2 определяют по знакам разностей

h 1 =H c -H 1 ,

h 2 = H c -H 2 , (5)

где Н с - высота вершины препятствия в точке С; Н 1 и Н 2 - высота земной поверхности в местах установки первого и второго знаков.

Рис.3. Схема определения высоты геодезических знаков

Поправки v за кривизну Земли и рефракцию вычисляют по формуле

где k - коэффициент земной рефракции; R- радиус Земли; s- расстояние от препятствия до соответствующего пункта. При k = 0,13 и R=6371 км формула (6) примет вид

V=0,068s 2 , (7)

где v получают в метрах, a s выражено в километрах.

В том случае, если превышения h 1 и h 2 имеют один и тот же знак, а расстояния s 1 и s 2 существенно разные, высоты знаков l ’ 1 и l ’ 2 , вычисленные по формулам (4), будут значительно отличаться друг от друга: один знак низкий, а другой чрезмерно высокий (рис.4). Высокие знаки строить экономически невыгодно. Поэтому высоты знаков, вычисленные по формулам (4), необходимо откорректировать так, чтобы сумма квадратов окончательных высот знаков l 1 и l 2 была наименьшей, т. е. = min. При соблюдении данного требования расходы на постройку данной пары знаков будут, как правило, наименьшими, поскольку стоимость постройки каждого знака при прочих равных условиях почти пропорциональна квадрату его высоты.

Откорректированные высоты каждой пары знаков на концах стороны при соблюдении условия = min и выполнении требования о прохождении визирного луча на заданной высоте а над препятствием вычисляются по формулам

Рис.4. Схема корректирования высоты геодезического знака

На пункте с n направлениями будет получено n значений высоты знака, так как вычисления по каждой отдельной стороне (направлению) дадут разные значения высоты знака на данном пункте. За окончательную высоту принимают ту, при которой обеспечивается видимость по всем направлениям при минимальной (допустимой) высоте прохождения визирных лучей над препятствиями. Результаты расчетов высот геодезических знаков представить в таблице 4.

Таблица 4

Название точек Расстояния s 1 и s 2 Высоты Н,м Превышения h 1 и h 2 v, м а,м Приближенные высоты l 1 ’ и l 2 ’ Откорректи-рованные высоты Стандартные высоты знаков
Лискино 2,4 137,5 3,5 0,4 1,0 4,9 6,2
С 141,0
Попово 5,2 138,2 2,8 1,8 1,0 5,6 2,8

Для наиболее сложных сторон построить профили, на которых кроме поверхности земли красной линией показать открывшуюся видимость после установки геодезического знака.

3.4. Предрасчет точности элементов сети триангуляции

Для уверенного использования окончательного варианта проекта геодезической сети необходимо иметь надежные численные характеристики слабых ее элементов. На составленной схеме находим слабые стороны сети. Слабая сторона находится по принципу равно удаленности ее от исходной стороны.

В качестве критерия точности принимается средняя квадратическая ошибка измеренных величин

где µ - средняя квадратическая ошибка единицы веса;

Р F – вес рассматриваемой функции.

За ошибку единицы веса принимается ошибка измеренных величин. Так как сеть еще проектируется, углы и длины, участвующие в предрасчете, определяются по топографической карте.

Средняя квадратическая ошибка слабой стороны n-треугольника, входящего в центральную систему или геодезический четырехугольник, определяется по формуле

где m lgb - средняя квадратическая ошибка логарифма исходной стороны;

m β - средняя квадратическая ошибка измерения угла в рассматриваемом классе триангуляции;

R i – ошибка геометрической связи трегольника.

Средняя квадратическая ошибка слабой стороны n-треугольника, являющегося элементом простой цепи треугольников определяется по формуле

Вычисление ошибки геометрической связи выполняется по формуле:

R i =δ 2 А i + δ 2 В i + δ А i * δ В i , (12)

где А i и B i – связующие углы в треугольниках;

δ А i , δ В i - приращения логарифмов синусов углов А и В при изменении углов на 1" в единицах 6-го знака логарифма. Значение δ можно определить по формуле

δ А i =МctgA i (1¤ρ")10 6 =2,11ctgA i . (13)

При предрасчете точности слабой стороны по средним квадратическим ошибкам, полученным по двум ходам, вычисляется среднее весовое значение по формуле:

где m lgS 1 и m lgS 2 средние квадратические ошибки определения от базиса по 1 и 2 ходам.

Относительную ошибку найдем по формуле

Пример. Запроектированная сеть триангуляции 3 класса состоит из центральной системы (рис.5). Слабой является сторона «Кленово-Завихрастово», выполним предрасчет ее точности, результаты вычисления ошибки геометрической связи по первому и второму ходу представим в таблице 5.

Рис.5.Фрагмент сети

Таблица 5

Ход 1 Ход 2
А В R i А В R i
5,44 5,05
5,62 5,40
6,28 4,81
Сумма 17,34 Сумма 15,25

m lgS1 =5,11 ; m lgS2 =4,86; m Sn(ср) =3,52;

Вывод: Полученная относительная ошибка слабой стороны удовлетворяет требованиям инструкции для сети триангуляции 3 класса.

Предрасчет точности в триангуляции 4 класса выполняется аналогичным способом.

3.5. Расчет качества сети строгим способом

Расчет качества сети строгим способом произведем на примере сети, изображенной на рис.6. Для этой сети имеем имеем 9 независимых условных уравнений: 7 уравнений фигур, 1 условие горизонта, 1 полюсное условное уравнение. Исходные данные приведены в табл. 6

Таблица 6

Название пункта № угла Угол, º δ Название пункта № угла Угол, º δ
A 0.68 F 1.08
1.71 J 1.17
B 0.73 1.37
1.27 1.65
C 1.37 O 0.60
0.60 1.12
D 1.59 1.97
1.71 1.32
E 1.59 1.03
1.17 1.48
0.98

Рис.6. Сеть триангуляции 3 класса

Условные уравнения фигур:

(1) + (2) + (3) + W1 = 0

(4) + (5) + (6) + W2 = 0

(7) + (8) + (9) + W3 = 0

(10) + (11) + (12) + W4 = 0

(13) + (14) + (15) + W5 = 0

(16) + (17) + (18) + W6 = 0

(19) + (20) + (21) + W7 = 0

Условные уравнения горизонта

(1) + (5) + (8) + (11) + (14) + (17)+ W8 = 0

Полюсные условные уравнения.

После логарифмирования, приведя к линейному виду, будем иметь

δ 2 (2)-δ 3 (3)+δ 4 (4)-δ 6 (6)+δ 7 (7)-δ 9 (9)+δ 10 (10)-δ 12 (12)+δ 13 (13)-δ 15 (15)+δ 16 (16)-δ 18 (18)+W9=0

Для составления весовой функции определяем слабую сторону по известному базису.

На основании полученной системы уравнений составим таблицу коэффициентов условных уравнений и весовой функции (табл. 7). Значения δ n вычислены по формуле δ=2,11ctgβ.

Таблица 7

Коэффициенты условных уравнений

№ п/п a b c d e g h i k f s
+1 +1 -0.60 +1.40
+1 +1.59 +1.59 +4.18
+1 -1.59 -0.59
+1 +1.37 +2.37
+1 +1 +2.00
+1 -1.17 -0.17
+0.68
+1 +0.68 +1.68
+1 +1 +2.00
+1 -1.17 -0.17
0.7
+1 +0.73 +1.73
+1 +1 +1.32 +3.32
+1 -1.71 -1.71 -2.42
+1 +1.37 +1.37 +3.74
+1 +1 +2.00
+1 -1.27 -1.27 -1.54
+1 +1.71 +1.71 +4.42
+1 +1 +2.00
+1 -0.60 -0.60 -0.20
+1.00
+1 +1.00
+1 +1.00
+1 +1.00
Σ -0.06 1.81 28.75

Так как мы имеем большое число условных уравнений, наиболее целесообразно вычислять обратный вес функции методом двухгруппового уравнивания. Обратный вес вычисляется по формуле

где f – коэффициенты заданной функции, для которой находят среднюю квадратическую ошибку; a, b, … - коэффициенты первичного, вторичного и т.д. преобразованных уравнений второй группы; , , … - суммы коэффициентов заданной функции по тем поправкам первого, второго и т.д. уравнений фигур первой группы, которые входят в выражение функции;

n 1, n 2 , … - число поправок, входящих соответственно в первые, вторые и т.д. уравнения фигур первой группы.

При разделении уравнений на две группы в первую группу включают все уравнения фигур (для нашей сети, т.к. нет перекрывающихся треугольников). Во вторую группу войдут все остальные уравнения и весовая функция, т.е. уравнение горизонта, полюса и уравнение функции.

Таблица 8

Коэффициенты условных уравнений первой группы

№ п/п a b c d e g h f
-0.60
1.59
=0.99
=0
=0
1.32
-1.71
=-0.39
1.37
-1.27
=0.10
1.71
-0.60
=1.11
=0

I= 2 /n 1 + …+ 7 /n 7 = 0,33+0,05+0,003+0,41=0,79

Преобразованные коэффициенты вычисляются по формуле

А=а-[а]/n; В=b-[b]/n,

где А, В – преобразованные коэффициенты; n – число углов, входящих в треугольник; [а]/n – среднее значение непреобразованных коэффициентов в треугольнике; [а] – сумма непреобразованных коэффициентов в треугольнике.

Таблица 9

Таблица преобразованных уравнений второй группы и определение коэффициентов нормальных уравнений

N поправки i k I K f s
0,67 -0,60 0,07
1,59 -0,33 1,59 1,59 2,85
-1,59 -0,34 -1,59 -1,93
0,33
1,37 -0,33 1,30 0,97
0,67 -0,06 0,61
-1,17 -0,34 -1,24 -1,58
0,33 0,07
0,68 -0,33 ,84 0,51
0,67 0,17 0,84
-1,17 -0,34 -1,01 -1,35
0,33 -0,16
0,73 -0,33 1,06 0,73
0,67 0,32 1,32 2,31
-1,71 -0,34 -1,38 -1,71 -3,43
0,33 -0,33
1,37 -0,33 1,34 1,37 2,38
0,67 -0,04 0,63
-1,27 -0,34 -1,30 -1,27 -2,91
0,33 0,03
1,71 -0,33 1,34 1,71 2,72
0,67 -0,37 0,30
-0,60 -0,34 -0,97 -0,60 -1,91
0,33 0,37
}
Загрузка...