musings.ru

Скорость распространения света в разных средах. Возможна ли сверхсветовая скорость

Ограничение скорости на большинстве автострад от 90 до 110 километров. Хотя в вакууме космического пространства нет дорожных указателей, но и там есть ограничение скорости - это 1080000000 километров в час.

Самая большая скорость в природе

Это самая большая скорость света в природе. Ученые обычно приводят скорость света в километрах в секунду - 300 000 километров в секунду. Свет состоит из фотонов. Именно они могут летать с такой сумасшедшей скоростью.

Своеобразные частицы – фотоны

Ученые называют фотоны частицами. Но это очень своеобразные частицы. У них нет массы покоя, то есть, в обычном смысле у них нет веса. Трудно себе представить что – то такое реальное, что было бы чистой энергией и не содержало бы ни крупицы вещества. Фотоны и есть такая реальность. сравнить предельную скорость фотонов с теми скоростями, которые мы привыкли считать большими.

Космический корабль, летящий со скоростью света, для стороннего наблюдателя не имел бы линейных размеров. Возьмем, например, ракету «Пионер», построенную для полетов за пределами Солнечной системы. Так вот, покидая пределы Солнечной системы, «Пионер» имел скорость 60 километров в секунду. Неплохо! Расстояние от Нью-Йорка до Сан-Франциско он мог бы покрыть за полторы минуты. Но в сравнении со скоростью фотона в 300 000 километров в секунду, скорость «Пионера» выглядит просто черепашьей. Или посмотрим, с какой скоростью перемещается в пространстве Солнце.

Материалы по теме:

Почему светят звезды?

Зато время, что вы читаете это предложение, Солнце, Земля и прочие восемь планет нашей Солнечной системы несутся вокруг Млечного Пути, как карусельные лошадки, со скоростью 230 километров в секунду (при этом сами-то мы совершенно не замечаем, что летим с такой невероятной скоростью). Но и эта огромная скорость очень мала по сравнению со скоростью света и составляет около одного ее процента.

Скорость света и предметы

Если разогнать обычный предмет до около световой скорости, с ним начнут происходить необыкновенные приключения. При достижении телом таких скоростей наблюдатель отметит изменение линейных размеров и массы предмета. Даже время начнет меняться. Космический корабль, летящий со скоростью 90 процентов скорости света, уменьшится в размерах приблизительно наполовину. При увеличении скорости он будет уменьшаться все сильнее и сильнее, пока при достижении скорости света он совершенно не потеряет свои линейные размеры.

Свет – одно из ключевых понятий оптической физики. Свет представляет собой электромагнитное излучение, доступное человеческому глазу.

Долгие десятилетия лучшие умы бились над проблемой определения, с какой скоростью движется свет и чему она равна, а также всех сопутствующих ему расчетов. В 1676 в кругу физиков произошла революция. Датский астроном, по имени Оле Ремер, опроверг утверждение, что свет распространяется по вселенной с неограниченной скоростью.

В 1676 году Оле Ремер определил, что скорость света в вакууме составляет 299792458 м/с .

Для удобства эту цифру принялись округлять. Номиналом, равным 300000 м/c, пользуются до сих пор.

Данное правило в обычных для нас условиях касается всех объектов без исключения, в том числе рентгеновских лучей, световых и гравитационных волн осязаемого для наших глаз спектра.

Современные физики, изучающие оптику, доказали, что значение скорости света имеет несколько характеристик:

  • постоянство;
  • недостижимость;
  • конечность.

Скорость света в разных средах

Следует помнить, что физическая константа напрямую зависит от окружающей её среды, в особенности от показателя преломления. В связи с этим точная величина способна меняться, ведь она обусловлена частотами.

Формула вычисления скорости света записывается как с = 3 * 10^8 м/с .

(в т. ч. световых); одна из фундам. физ. постоянных; представляет собой предельную скорость распространения любых физ. воздействий (см. Относительности теория )и инвариантна при переходе от одной системы отсчёта к другой.

С. с. в среде с" зависит от показателя преломления среды n, различного для разных частот v (Дисперсия света): . Эта зависимость приводит к отличию групповой скорости от фазовой скорости света в среде, если речь идёт не о монохроматич. свете (для С. с. в вакууме эти две величины совпадают). Экспериментально определяя с" , всегда измеряют групповую С. с. либо т. н. с к о р о с т ь сигнала, или скорость передачи энергии, только в нек-рых спец. случаях не равную групповой.

Впервые С. с. определил в 1676 О. К. Рёмер (О. Ch. Roemer) по изменению промежутков времени между затмениями спутников Юпитера. В 1728 её установил Дж. Брадлей (J. Bradley), исходя из своих наблюдений аберрации света звёзд. В 1849 А. И. Л. Физо (А. Н. L. Fizeau) первым измерил С. с. по времени прохождения светом точно известного расстояния (базы); т. к. показатель преломления воздуха очень мало отличается от 1, то наземные измерения дают величину, весьма близкую к с. В опыте Физо пучок света от источника S (рис. 1), отражённый полупрозрачным зеркалом N , периодически прерывался вращающимся зубчатым диском W , проходил базу MN (ок. 8 км) н, отразившись от зеркала М , возвращался к диску. Попадая на зубец, свет не достигал наблюдателя, а попавший в промежуток между зубцами свет можно было наблюдать через окуляр Е . По известным скоростям вращения диска определялось время прохождения светом базы. Физо получил значение с = 313300 км/с В 1862 Ж. Б. Л. Фуко (J. В. L. Foucault) реализовал высказанную в 1838 идею Д. Араго (D. Arago), применив вместо зубчатого диска быстровращающееся (512 об/с) зеркало. Отражаясь от зеркала, пучок света направлялся на базу и по возвращении вновь попадал на это же зеркало, успевшее повернуться на нек-рый малый угол (рис. 2). При базе всего в 20 м Фуко нашёл, что С. с. равна 298000 500 км/с. Схемы и осн. идеи опытов Физо и Фуко были многократно использованы в последующих работах по определению С. с. Полученное А. Майкельсоном (A. Michelson) (см. Майкельсона опыт )в 1926 значение км/с было тогда самым точным и вошло в интернац. таблицы физ. величин.

Рис. 1. Определение скорости света методом Физо .

Рис. 2. Определение скорости света методом вращающегося зеркала (методом Фуко): S - источник света; R - быстровращающееся зеркало; С - неподвижное вогнутое зеркало, центр которого совпадает с осью вращения Я (поэтому свет, отражённый С, всегда попадает обратно на R); М-полупрозрачное зеркало; L - объектив; Е - окуляр; RС - точно измеренное расстояние (база). Пунктиром показаны положение R, изменившееся за время прохождения светом пути RС и обратно, и обратный ход пучка лучей через объектив L, который собирает отражённый пучок в точке S", а не вновь в точке S, как это было бы при неподвижном зеркале Л. Скорость света устанавливают, измеряя смещение SS" .

Измерения С. с. в 19 в. сыграли большую роль в , дополнительно подтвердив волновую теорию света. Выполненное Фуко в 1850 сравнение С. с. одной и той же частоты v в воздухе и воде показало, что скорость в воде в соответствии с предсказанием волновой теории. Была также установлена связь оптики с теорией электромагнетизма: измеренная С. с. совпала со скоростью эл--магн. волн, вычисленной из отношения эл--магн. и эл--статич. единиц электрич. заряда [опыты В. Вебера (W. Weber) и Ф. Кольрауша (F. Kohlrausch) в 1856 и последующие более точные измерения Дж. К. Максвелла (J. С. Maxwell)]. Это совпадение явилось одним из отправных пунктов при создании Максвеллом в 1864-73 эл--магн. теории света.

В совр. измерениях С. с. используется модернизиров. метод Физо (модуляц. метод) с заменой зубчатого колеса на эл--оптич., ., интерференционный или к--л. иной модулятор света, полностью прерывающий или ослабляющий световой пучок (см. Модуляция света ).Приёмником излучения служит фотоэлемент пли фотоэлектронный умножитель .Применение лазера в качестве источника света, УЗ-модулятора со стабилизиров. частотой и повышение точности измерения длины базы позволили снизить погрешности измерений и получить значение км/с. Помимо прямых измерений С. с. по времени прохождения известной базы, широко применяются косвенные методы, дающие большую точность. Так, с помощью микроволнового вакуумиров. [К. Фрум (К. Froome), 1958] при длине волны излучения = 4 см получено значение км/с. С ещё меньшей погрешностью определяется С. с. как частное от деления независимо найденных и v атомарных или молекулярных спектральных линий . К. Ивенсон (К. Evenson) и его сотрудники в 1972 по цезиевому стандарту частоты (см. Квантовые стандарты частоты )нашли с точностью до 11-го знака частоту излучения СН 4 -лазера, а по криптоновому стандарту частоты - его длину волны (ок. 3,39 мкм) и получили ± 0,8 м/с. Решением Генеральной ассамблеи Международного комитета по численным данным для науки и техники - КОДАТА (1973), проанализировавшей все имеющиеся данные, их достоверность и погрешность, С. с. в вакууме принято считать равной 299792458 ±1,2 м/с.

Как можно более точное измерение величины с чрезвычайно важно не только в общетеоретич. плане и для определения значении др. физ. величин, но и для практич. целей. К ним, в частности, относится определение расстояний по времени прохождения радио-или световых сигналов в радиолокации, оптической локации, светодальнометрии , в системах слежения ИСЗ и др.

Лит.: Вафиади В. Г., Попов Ю. В., Скорость света и ее значение в науке и технике, Минск, 1970; Тейлор В., Паркер В., Лангенберг Д., Фундаментальные константы и квантовая , пер. с англ., М., 1972. А. М. Бонч-Бруевич .

Человека всегда интересовала природа света, о чем свидетельствуют мифы, легенды, дошедшие до нас философские споры и научные наблюдения. Свет всегда был поводом для дискуссий древних философов, а попытки его изучения предпринимались еще во времена возникновения эвклидовой геометрии - за 300 лет до н.э. Уже тогда было известно о прямолинейности распространения света, равенстве углов падения и отражения, явлении преломления света, обсуждались причины возникновения радуги. Аристотель считал, что скорость света бесконечно велика, а значит, логически рассуждая, и света не подлежит обсуждению. Типичный случай, когда проблема своей глубиной опережает эпоху понимания ответа.

Каких-то 900 лет назад Авиценна предположил, что какой бы большой ни была скорость света она, все-таки, имеет конечную величину. Такого мнения был не только он, но никому не удавалось доказать это экспериментально. Гениальный Галилео Галилей предложил эксперимент механистического понимания проблемы: два человека, стоящие на расстоянии нескольких километров друг от друга, подают сигналы, открывая заслонку фонаря. Как только второй участник увидит свет от первого фонаря, он открывает свою заслонку и первый участник фиксирует время получения ответного светового сигнала. Затем расстояние увеличивается и все повторяется. Ожидалось зафиксировать увеличение задержки и на этой основе выполнить расчет скорости света. Эксперимент закончился ничем, потому как «все было не внезапно, но чрезвычайно быстро».

Первым измерил скорость света в вакууме в 1676 году астроном Оле Ремер - он воспользовался открытием Галилея: тот обнаружил в 1609 году четыре у которых в течение полугода разница времени между двумя затмениями спутника составляла 1320 секунд. Пользуясь астрономическими сведениями своего времени Ремер получил значение скорости света равным 222000 км в секунду. Потрясающим оказалось то, что сам метод измерения невероятно точен - применение ныне известных данных диаметра Юпитера и времени запаздывания затемнения спутника дает скорость света в вакууме, на уровне современных значений, полученных другими способами.

Поначалу к опытам Ремера была только одна претензия - необходимо было провести измерения земными средствами. Прошло почти 200 лет, и Луи Физо построил остроумную установку, в которой луч света отражался от зеркала на расстоянии более 8 км и приходил обратно. Тонкость была в том, что он проходил по дороге туда-обратно через впадины зубчатого колеса, и если скорость вращения колеса увеличивать, то настанет момент, когда свет перестанет быть виден. Остальное - дело техники. Результат измерения - 312000 км в секунду. Мы сейчас видим, что Физо был еще ближе к истине.

Следующий шаг в измерении скорости света сделал Фуко, который заменил зубчатое колесо Это позволило уменьшить габариты установки и увеличить точность измерения до 288000 км в секунду. Не меньшей важности был и проделанный Фуко эксперимент, в котором он определил скорость света в среде. Для этого между зеркалами установки была помещена труба с водой. В этом опыте было установлено уменьшение скорости света при его распространении в среде в зависимости от коэффициента преломления.

Во второй половине 19-го века наступило время Майкельсона, который посвятил 40 лет своей жизни измерениям в области света. Венцом его работы стала установка, на которой он измерил скорость света в вакууме используя вакуумированную металлическую трубу длиной более полутора километров. Другим фундаментальным достижением Майкельсона было доказательство того факта, что для любой длины волны скорость света в вакууме одинаковая и в качестве современного эталона составляет 299792458+/- 1.2 м/c. Такие измерения проводились на основании уточненных значений эталонного метра, определение которого утверждено с 1983 г. в качестве международного стандарта.

Мудрый Аристотель был неправ, но чтобы это доказать понадобилось почти 2000 лет.

Скорость света - абсолютная величина скорости распространения электромагнитных волн в вакууме. В физике традиционно обозначается латинской буквой «c» (произносится как [цэ]). Скорость света в вакууме - фундаментальная постоянная, не зависящая от выбора инерциальной системы отсчёта (ИСО). Она относится к фундаментальным физическим постоянным, которые характеризуют не просто отдельные тела, а свойства пространства-времени в целом. По современным представлениям, скорость света в вакууме - предельная скорость движения частиц и распространения взаимодействий. Также важен тот факт, что эта величина абсолютна. Это один из постулатов СТО.

В вакууме (пустоте)

В 1977 году удалось вычислить приблизительную скорость света, равную 299 792 458 ± 1,2 м/с рассчитанную исходя из эталонного метра 1960 года. На данный момент считают, что скорость света в вакууме - фундаментальная физическая постоянная, по определению, точно равная 299 792 458 м/с, или примерно 1 079 252 848,8 км/ч. Точное значение связано с тем, что с 1983 года за эталон метра принято расстояние, которое проходит свет в вакууме за промежуток времени, равный 1 / 299 792 458 секунды. Скорость света обозначается буквой c.

Основополагающий для СТО опыт Майкельсона показал, что скорость света в вакууме не зависит ни от скорости движения источника света, ни от скорости движения наблюдателя. В природе со скоростью света распространяются:

собственно видимый свет

другие виды электромагнитного излучения (радиоволны, рентгеновские лучи и др.)

Из специальной теории относительности следует, что ускорение частиц, имеющих массу покоя, до скорости света невозможно, так как это событие нарушило бы фундаментальный принцип причинности. То есть, исключается превышение скорости света сигналом, или движение массы с такой скоростью. Однако теория не исключает движение частиц в пространстве-времени со сверхсветовой скоростью. Гипотетические частицы, движущиеся со сверхсветовой скоростью, называются тахионами. Математически, тахионы легко укладываются в преобразование Лоренца - это частицы с мнимой массой. Чем выше скорость этих частиц, тем меньше энергии они несут, и наоборот, чем ближе их скорость к скорости света, тем больше их энергия - так же, как и энергия обычных частиц, энергия тахионов стремится к бесконечности при приближении к скорости света. Это самое очевидное следствие преобразования Лоренца, не позволяющее частице ускориться до скорости света - сообщить частице бесконечное количество энергии просто невозможно. Следует понимать, что, во-первых, тахионы - это класс частиц, а не один вид частиц, и, во-вторых никакое физическое взаимодействие не может распространяться быстрее скорости света. Из этого следует, что тахионы не нарушают принцип причинности - с обычными частицами они никак не взаимодействуют, а между собой разность их скоростей также не бывает равной скорости света.

Обычные частицы, движущиеся медленнее света, называются тардионами. Тардионы не могут достичь скорости света, а только лишь сколь угодно близко подойти к ней, так как при этом их энергия становится неограниченно большой. Все тардионы обладают массой покоя, в отличие от безмассовых фотонов и гравитонов, которые всегда движутся со скоростью света.

В планковских единицах скорость света в вакууме равна 1, то есть свет проходит 1 единицу планковской длины за единицу планковского времени.

В прозрачной среде

Скорость света в прозрачной среде - скорость, с которой свет распространяется в среде, отличной от вакуума. В среде, обладающей дисперсией, различают фазовую и групповую скорость.

Фазовая скорость связывает частоту и длину волны монохроматического света в среде (λ=c/ν). Эта скорость обычно (но не обязательно) меньше c. Отношение фазовой скорости света в вакууме к скорости света в среде называется показателем преломления среды. Групповая скорость света в равновесной среде всегда меньше c. Однако в неравновесных средах она может превышать c. При этом, однако, передний фронт импульса все равно двигается со скоростью, не превышающей скорости света в вакууме.

Арман Ипполит Луи Физо на опыте доказал, что движение среды относительно светового луча так же способно влиять на скорость распространения света в этой среде.

Отрицание постулата о максимальности скорости света

В последние годы нередко появляются сообщения о том, что в так называемой квантовой телепортации взаимодействие распространяется быстрее скорости света. Например, 15 августа 2008 г. исследовательская группа доктора Николаса Гизена (Nicolas Gisin) из университета Женевы, исследуя разнесенные на 18 км в пространстве связанные фотонные состояния, якобы показала, что «взаимодействие между частицами осуществляется со скоростью, примерно в сто тысяч раз большей скорости света». Ранее также обсуждался так называемый парадокс Хартмана - сверхсветовая скорость при туннельном эффекте.

Научный анализ значимости этих и подобных результатов показывает, что они принципиально не могут быть использованы для сверхсветовой передачи какого-либо сигнала или перемещения вещества.

История измерений скорости света

Античные учёные, за редким исключением, считали скорость света бесконечной . В Новое время этот вопрос стал предметом дискуссий. Галилей и Гук допускали, что она конечна, хотя и очень велика, в то время как Кеплер, Декарт и Ферма по-прежнему отстаивали бесконечность скорости света.

Первую оценку скорости света дал Олаф Рёмер (1676). Он заметил, что когда Земля и Юпитер находятся по разные стороны от Солнца, затмения спутника Юпитера Ио запаздывают по сравнению с расчётами на 22 минуты. Отсюда он получил значение для скорости света около 220000 км/сек - неточное, но близкое к истинному. Спустя полвека открытие аберрации позволило подтвердить конечность скорости света и уточнить её оценку.


Загрузка...