musings.ru

Что значит стандартный вид многочлена. Приведение многочленов к стандартному виду

На данном уроке мы вспомним основные определения данной темы и рассмотрим некоторые типовые задачи, а именно приведение многочлена к стандартному виду и вычисление численного значения при заданных значениях переменных. Мы решим несколько примеров, в которых будет применяться приведение к стандартному виду для решения разного рода задач.

Тема: Многочлены. Арифметические операции над одночленами

Урок: Приведение многочлена к стандартному виду. Типовые задачи

Напомним основное определение: многочлен - это сумма одночленов. Каждый одночлен, входящий в состав многочлена как слагаемое называется его членом. Например:

Двучлен;

Многочлен;

Двучлен;

Поскольку многочлен состоит из одночленов, то первое действие с многочленом следует отсюда - нужно привести все одночлены к стандартному виду. Напомним, что для этого нужно перемножить все численные множители - получить численный коэффициент, и перемножить соответствующие степени - получить буквенную часть. Кроме того, обратим внимание на теорему о произведении степеней: при умножении степеней показатели их складываются.

Рассмотрим важную операцию - приведение многочлена к стандартному виду. Пример:

Комментарий: чтобы привести многочлен к стандартному виду, нужно привести к стандартному виду все одночлены, входящие в его состав, после этого, если есть подобные одночлены - а это одночлены с одинаковой буквенной частью - выполнить действия с ними.

Итак, мы рассмотрели первую типовую задачу - приведение многочлена к стандартному виду.

Следующая типовая задача - вычисление конкретного значения многочлена при заданных численных значениях входящих в него переменных. Продолжим рассматривать предыдущий пример и зададим значения переменных:

Комментарий: напомним, что единица в любой натуральной степени равна единице, а ноль в любой натуральной степени равен нулю, кроме того, напомним, что при умножении любого числа на ноль получаем ноль.

Рассмотрим ряд примеров на типовые операции приведения многочлена к стандартному виду и вычисление его значения:

Пример 1 - привести к стандартному виду:

Комментарий: первое действие - приводим одночлены к стандартному виду, нужно привести первый, второй и шестой; второе действие - приводим подобные члены, то есть выполняем над ними заданные арифметические действия: первый складываем с пятым, второй с третьим, остальные переписываем без изменений, так как у них нет подобных.

Пример 2 - вычислить значение многочлена из примера 1 при заданных значениях переменных:

Комментарий: при вычислении следует вспомнить, что единица в любой натуральной степени это единица, при затруднении вычислений степеней двойки можно воспользоваться таблицей степеней.

Пример 3 - вместо звездочки поставить такой одночлен, чтобы результат не содержал переменной :

Комментарий: независимо от поставленной задачи, первое действие всегда одинаково - привести многочлен к стандартному виду. В нашем примере это действие сводится к приведению подобных членов. После этого следует еще раз внимательно прочитать условие и подумать, каким образом мы можем избавиться от одночлена . очевидно, что для этого нужно к нему прибавить такой же одночлен, но с противоположным знаком - . далее заменяем звездочку этим одночленом и убеждаемся в правильности нашего решения.

Члены многочлена являются базовыми единицами многих алгебраических структур. По своему определению, мономы - это либо натуральные числовые значения, либо некие переменные (группы умноженных друг на друга переменных).

Одним из главных математических действий над многочленом является приведение подобных слагаемых. В этом видеоуроке мы рассмотрим более подробно, что собой представляют операции над многочленом.

Так как все члены полинома между собой связаны посредством алгебраического суммирования, то все они именуются слагаемыми. Подобными же являются мономы, имеющие одинаковую буквенную часть, т.е. состоящие из одинаковых переменных. При этом переменные обязательно должны быть в одинаковой степени и при равном числовом коэффициенте. А отдельные числовые значения в многочленах считаются приравненными к подобным слагаемым сами по себе.

Приведение подобных слагаемых подразумевает группирование мономов многочлена так, чтобы получились отдельные части, состоящие полностью из подобных слагаемых. К примеру, рассмотрим данный многочлен:

3а 2 + 2ab 2 - 6 - 3с 3 + 6а 2 - 7ab 2 + 7

Подобными слагаемыми, в данном случае, являются:

  1. Все свободные числовые значения: -6, +7;
  2. Мономы с основанием а в квадрате: +3а 2 , +6а 2 ;
  3. Мономы с основанием аb в квадрате: 2ab 2 , -7ab 2 ;
  4. Мономы с основанием с в кубе: -3с 3 ;

Последняя группа состоит из одного лишь одночлена, не имеющего подобного себе во всем полиноме.

Зачем нужны такие преобразования? Приведение подобных слагаемых помогает упростить многочлен, привести его к элементарному виду, который состоит из меньшего количества мономов. Это легко сделать, сгруппировав те члены, между которыми совершаются алгебраические действия. Главными операциями тут становится вычитание и сложение - они же оказывают эффект перегруппировки и позволяют свободно перемещать одночлены внутри полинома. Поэтому вполне по правилам будет преобразовать вышеуказанный пример так:

6 +7 + 3а 2 +6а 2 + 2ab 2 +(-7ab 2) + (-3с 3) =

9а 2 - 5ab 2 - 3с 3 - 1

Реализовав стандартное вычитание и сложение, получаем упрощенный многочлен. Если первоначальный вариант насчитывал 7 одночленов, то текущий имеет всего 4 члена. Однако возникает закономерный вопрос, что является точным критерием «простоты» многочлена?
С точки зрения алгебраических правил, элементарным, а точнее - стандартным многочленом считается такой полином, у которого все основания одночленов разные, и не являются подобными друг другу. Наш пример:

9а 2 - 5ab 2 - 3с 3 - 1

Состоит из мономов с основаниями а 2 , ab 2 , с 3 , а также, из одного числового значения. Ни один из вышеперечисленных элементов не может быть суммирован или вычтен из другого. Перед нами - стандартный полином, состоящий из четырех членов.

У любого многочлена есть такой критерий, как степень. Степенью полинома, в общем отношении, называется наибольшая степень одночлена в данном многочлене. Стоит усвоить важную деталь - степени многобуквенных (многопеременных) выражений суммируются. Поэтому, общая степень ab 2 равна трем (а в первой степени, b в квадрате). А многочлен вида:

9а 2 - 5ab 2 - 3с 3 - 1

имеет степень, равную трем, так как один из одночленов находится в наибольшей кубической степени.

Степень полиномов принято определять только для стандартного вида. Если многочлен имеет подобные слагаемые, то его сначала приводят к упрощенному виду, а потом вычисляют итоговую степень.

Если многочлен состоит только из одних числовых одночленов, то его стандартная форма приобретает вид единственного числа, являющегося алгебраической суммой всех мономов. Степень данного числа, как многочлена, равна нулю. Если же само число, будучи стандартным видом полинома, приобретает значение «ноль», то его степень считается неопределенной, а сам «нулевой» многочлен называется нуль-полиномом.

На представленном видео также заметно, что любой многочлен имеет, помимо всего прочего, старший коэффициент и свободный член. Старшим коэффициентом называют числовое значение, стоящие перед переменной с наибольшей степенью (той самой, которая задает разряд самому многочлену). А свободный член - это итоговая сумма всех числовых значений многочлена. Если подобных значений в полиноме нет, либо же если они полностью сокращаются, то свободный член принимают равным 0. В примере:

7а 4 - 2в 2 + 5с 3 + 3

старшим коэффициентом является число 7, потому что оно стоит перед переменной, имеющей наибольшую степень (четвертую - и, вместе с тем, весь многочлен имеет четвертую степень). Свободный член, в данном примере, равен 3.

Понятие многочлена

Определение многочлена: многочлен - это сумма одночленов. Пример многочлена:

здесь мы видим сумму двух одночленов, а это и есть многочлен, т.е. сумма одночленов.

Слагаемые, из которых состоит многочлен, называются членами многочлена.

Является ли разность одночленов многочленом? Да, является, ведь разность легко приводится к сумме, пример: 5a – 2b = 5a + (-2b).

Одночлены тоже считают многочленами. Но в одночлене нет суммы, тогда почему его считают многочленом? А к нему можно прибавить ноль и получить его сумму с нулевым одночленом. Итак, одночлен - это частный случай многочлена, он состоит из одного члена.

Число ноль - это нулевой многочлен.

Стандартный вид многочлена

Что такое многочлен стандартного вида? Многочлен есть сумма одночленов и если все эти одночлены, составляющие многочлен, записаны в стандартном виде, кроме того среди них не должно быть подобных, тогда многочлен записан в стандартном виде.

Пример многочлена в стандартном виде:

здесь многочлен состоит из 2-х одночленов, каждый из которых имеет стандартный вид, среди одночленов нет подобных.

Теперь пример многочлена, который не имеет стандартный вид:

здесь два одночлена: 2a и 4a являются подобными. Надо их сложить, тогда многочлен получит стандартный вид:

Ещё пример:

Этот многочлен приведен к стандартному виду? Нет, у него второй член не записан в стандартом виде. Записав его в стандартном виде, получаем многочлен стандартного вида:

Степень многочлена

Что такое степень многочлена?

Степень многочлена определение:

Степень многочлена - наибольшая степень, которую имеют одночлены, составляющие данный многочлен стандартного вида.

Пример. Какова степень многочлена 5h? Степень многочлена 5h равна одному, ведь в этот многочлен входит всего один одночлен и степень его равна одному.

Другой пример. Какова степень многочлена 5a 2 h 3 s 4 +1? Степень многочлена 5a 2 h 3 s 4 + 1 равна девяти, ведь в этот многочлен входят два одночлена, наибольшую степень имеет первый одночлен 5a 2 h 3 s 4 , а его степень равна 9-ти.

Ещё пример. Какова степень многочлена 5? Степень многочлена 5 равна нулю. Итак, степень многочлена, состоящего только из числа, т.е. без букв, равна нулю.

Последний пример. Какова степень нулевого многочлена, т.е. нуля? Степень нулевого многочлена не определена.

Среди различных выражений, которые рассматриваются в алгебре, важное место занимают суммы одночленов. Приведем примеры таких выражений:
\(5a^4 - 2a^3 + 0,3a^2 - 4,6a + 8 \)
\(xy^3 - 5x^2y + 9x^3 - 7y^2 + 6x + 5y - 2 \)

Сумму одночленов называют многочленом. Слагаемые в многочлене называют членами многочлена. Одночлены также относят к многочленам, считая одночлен многочленом, состоящим из одного члена.

Например, многочлен
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 \)
можно упростить.

Представим все слагаемые в виде одночленов стандартного вида:
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 = \)
\(= 8b^5 - 14b^5 + 3b^2 -8b -3b^2 + 16 \)

Приведем в полученном многочлене подобные члены:
\(8b^5 -14b^5 +3b^2 -8b -3b^2 + 16 = -6b^5 -8b + 16 \)
Получился многочлен, все члены которого являются одночленами стандартного вида, причем среди них нет подобных. Такие многочлены называют многочленами стандартного вида .

За степень многочлена стандартного вида принимают наибольшую из степеней его членов. Так, двучлен \(12a^2b - 7b \) имеет третью степень, а трехчлен \(2b^2 -7b + 6 \) - вторую.

Обычно члены многочленов стандартного вида, содержащих одну переменную, располагают в порядке убывания показателей ее степени. Например:
\(5x - 18x^3 + 1 + x^5 = x^5 - 18x^3 + 5x + 1 \)

Сумму нескольких многочленов можно преобразовать (упростить) в многочлен стандартного вида.

Иногда члены многочлена нужно разбить на группы, заключая каждую группу в скобки. Поскольку заключение в скобки - это преобразование, обратное раскрытию скобок, то легко сформулировать правила раскрытия скобок:

Если перед скобками ставится знак «+», то члены, заключаемые в скобки, записываются с теми же знаками.

Если перед скобками ставится знак «-», то члены, заключаемые в скобки, записываются с противоположными знаками.

Преобразование (упрощение) произведения одночлена и многочлена

С помощью распределительного свойства умножения можно преобразовать (упростить) в многочлен произведение одночлена и многочлена. Например:
\(9a^2b(7a^2 - 5ab - 4b^2) = \)
\(= 9a^2b \cdot 7a^2 + 9a^2b \cdot (-5ab) + 9a^2b \cdot (-4b^2) = \)
\(= 63a^4b - 45a^3b^2 - 36a^2b^3 \)

Произведение одночлена и многочлена тождественно равно сумме произведений этого одночлена и каждого из членов многочлена.

Этот результат обычно формулируют в виде правила.

Чтобы умножить одночлен на многочлен, надо умножить этот одночлен на каждый из членов многочлена.

Мы уже неоднократно использовали это правило для умножения на сумму.

Произведение многочленов. Преобразование (упрощение) произведения двух многочленов

Вообще, произведение двух многочленов тождественно равно сумме произведении каждого члена одного многочлена и каждого члена другого.

Обычно пользуются следующим правилом.

Чтобы умножить многочлен на многочлен, надо каждый член одного многочлена умножить на каждый член другого и сложить полученные произведения.

Формулы сокращенного умножения. Квадраты суммы, разности и разность квадратов

С некоторыми выражениями в алгебраических преобразованиях приходится иметь дело чаще, чем с другими. Пожалуй, наиболее часто встречаются выражения \((a + b)^2, \; (a - b)^2 \) и \(a^2 - b^2 \), т. е. квадрат суммы, квадрат разности и разность квадратов. Вы заметили, что названия указанных выражений как бы не закончены, так, например, \((a + b)^2 \) - это, конечно, не просто квадрат суммы, а квадрат суммы а и b. Однако квадрат суммы а и b встречается не так уж часто, как правило, вместо букв а и b в нем оказываются различные, иногда довольно сложные выражения.

Выражения \((a + b)^2, \; (a - b)^2 \) нетрудно преобразовать (упростить) в многочлены стандартного вида, собственно, вы уже встречались с таким заданием при умножении многочленов:
\((a + b)^2 = (a + b)(a + b) = a^2 + ab + ba + b^2 = \)
\(= a^2 + 2ab + b^2 \)

Полученные тождества полезно запомнить и применять без промежуточных выкладок. Помогают этому краткие словесные формулировки.

\((a + b)^2 = a^2 + b^2 + 2ab \) - квадрат суммы равен сумме квадратов и удвоенного произведения.

\((a - b)^2 = a^2 + b^2 - 2ab \) - квадрат разности равен сумме квадратов без удвоенного произведения.

\(a^2 - b^2 = (a - b)(a + b) \) - разность квадратов равна произведению разности на сумму.

Эти три тождества позволяют в преобразованиях заменять свои левые части правыми и обратно - правые части левыми. Самое трудное при этом - увидеть соответствующие выражения и понять, чем в них заменены переменные а и b. Рассмотрим несколько примеров использования формул сокращенного умножения.

Многочлен и его стандартный вид

Многочленом называется сумма одночленов.

Одночлены, из которых составлен многочлен, называют членами многочлена. Так членами многочлена 4x2y - 5xy + 3x -1 являются 4x2y, -5xy, 3x и -1 .

Если многочлен состоит из двух членов, то его называют двучленом, если из трех - трехчленом. Одночлен считают многочленом, состоящим из одного члена.

В многочлене 7x3y2 - 12 + 4x2y - 2y2x3 + 6 члены 7x3y2 и - 2y2x3 являются подобными слагаемыми, так как имеют одну и ту же буквенную часть. Подобными являются и слагаемые -12 и 6, не имеющие буквенной части. Подобные слагаемые в многочлене называют подобными членами многочлена, а приведение подобных слагаемых в многочлене - приведением подобных членов многочлена.

Приведем для примера подобные члены в многочлене 7x3y2 - 12 + 4x2y - 2y2x3 + 6 = 5x3y2 + 4x2y - 6 .

Многочлен называется многочленом стандартного вида, если каждый его член является одночленом стандартного вида и этот многочлен не содержит подобных слагаемых.

Любой многочлен можно привести к стандартному виду. Для этого нужно каждый его член представить в стандартном виде и привести подобные слагаемые.

Степенью многочлена стандартного вида называют наибольшую из степеней входящих в него одночленов.

Степенью произвольного многочлена называют степень тождественно равного ему многочлена стандартного вида.

Для примера найдем степень многочлена 8x4y2 - 12 + 4x2y - 3y2x4 + 6 - 5y2x4:

8x4y2 - 12 + 4x2y - 3y2x4 + 6 - 5y2x4 = 4x2y -6.

Заметим, что в исходный многочлен входят одночлены шестой степени, но при приведении подобных членов все они сократились, и получился многочлен третьей степени, значит и исходный многочлен имеет степень 3!
Многочлены от одной переменной

Выражение вида, где - некоторые числа и, называется многочленом степени от.

Два многочлена называются тождественно равными, если их числовые значения совпадают при всех значениях. Многочлены и тождественно равны тогда и только тогда, когда они совпадают, т.е. коэффициенты при одинаковых степенях этих многочленов одинаковы.

При делении многочлена на многочлен (например «уголком») получаем многочлен (неполное частное) и остаток - многочлен (в случае, когда остаток равен нулю, многочлен называется частным). Если - делимое, - делитель, то многочлен представим в виде. При этом сумма степеней многочленов и равна степени многочлена, а степень остатка меньше степени делителя..

Понятие многочлена. Степень многочлена

Многочленом от переменной х будем называть выражение вида

anxn+an-1xn-1+... +a1x+a0,где n - натуральное число; аn, an-1,..., a1, a0 - любые числа, называемые коэффициентами этого многочлена. Выражения anxn, an-1xn-1,..., a1х, a0 называются членами многочлена, а0 - свободным членом.

Часто будем употреблять и такие термины: an - коэффициент при хn, аn-1 - коэффициент при хn-1 и т.д.

Примерами многочленов являются следующие выражения: 0х4+2х3+ (-3) х3+ (3/7) х+; 0х2+0х+3; 0х2+0х+0. Здесь для первого многочлена коэффициентами являются числа 0, 2, - 3, 3/7, ; при этом, например, число 2 - коэффициент при х3, а - свободный член.

Многочлен, у которого все коэффициенты равны нулю, называется нулевым.

Так, например, многочлен 0х2+0х+0 - нулевой.

Из записи многочлена видно, что он состоит из нескольких членов. Отсюда и произошел термин ‹‹многочлен›› (много членов). Иногда многочлен называют полиномом. Этот термин происходит от греческих слов πολι - много и νομχ - член.

Многочлен от одной переменной х будем обозначать так: f (x), g (x), h (x) и т.д. например, если первый приведённых выше многочленов обозначить f (x), то можно записать: f (x) =0x4+2x3+ (-3) x2+3/7x+.

Для того чтобы запись многочлена выглядела проще и выглядела компактнее, договорились о ряде условностей.

Те члены не нулевого многочлена, у коэффициенты равны нулю, не записывают. Например, вместо f (x) =0x3+3x2+0x+5 пишут: f (x) =3x2+5; вместо g (x) =0x2+0x+3 - g (x) =3. Таким образом, каждое число - это тоже многочлен. Многочлен h (x), у которого все коэффициенты равны нулю, т.е. нулевой многочлен, записывают так: h (x) =0.

Коэффициенты многочлена, не являющиеся свободным членом и равные 1, тоже не записывают. Например, многочлен f (x) =2x3+1x2+7x+1 можно записать так: f (x) =x3+x2+7x+1.

Знак ‹‹-›› отрицательного коэффициента относят к члену, содержащему этот коэффициент, т.е., например, многочлен f (x) =2x3+ (-3) x2+7x+ (-5) записывают в виде f (x) =2x3-3x2+7x-5. При этом, если коэффициент, не являющийся свободным членом, равен - 1, то знак "-" сохраняют перед соответствующим членом, а единицу не пишут. Например, если многочлен имеет вид f (x) =x3+ (-1) x2+3x+ (-1), то его можно записать так: f (x) =x3-x2+3x-1.

Может возникнуть вопрос: зачем, например, уславливаться о замене 1х на х в записи многочлена, если известно, что 1х=х для любого числа х? Дело в том, что последнее равенство имеет место, если х - число. В нашем же случае х - элемент произвольной природы. Более того запись 1х мы пока не имеем права рассматривать как произведение числа 1 и элемента х, ибо, повторяем х - это не число. Именно таким обстоятельством и вызваны условности в записи многочлена. И если мы дальше говорим все-таки о произведении, скажем, 2 и х без всяких оснований, то этим допускаем некоторую нестрогость.

В связи с условностями в записи многочлена обращаем внимание на такую деталь. Если имеется, например, многочлен f (x) =3х3-2х2-х+2, то его коэффициенты - это числа 3, - 2, - 1,2. Конечно, можно было бы сказать, что коэффициентами являются числа 0, 3, - 2, - 1, 2, имея в виду такое представление данного многочлена: f (x) =0x4-3x2-2x2-x+2.

В дальнейшем для определенности будем указывать коэффициенты, начиная с отличного от нуля, в порядке их следования в записи многочлена. Так, коэффициентами многочлена f (x) =2x5-x являются числа 2, 0, 0, 0, - 1, 0. Дело в том, что хотя, например, член с х2 в записи отсутствует, это лишь означает, что его коэффициент равен нулю. Аналогично свободного члена в записи нет, поскольку он равен нулю.

Если имеется многочлен f (x) =anxn+an-1xn-1+... +a1x+a0 и an≠0, то число n называют степенью многочлена f (x) (или говорят: f (x) - n-й степени) и пишут ст. f (x) =n. В этом случае an называется старшим коэффициентом, а anxn - старшим членом данного многочлена.

Например, если f (x) =5x4-2x+3, то ст. f (x) =4, старший коэффициент - 5, старший член - 5х4.

Рассмотрим теперь многочлен f (x) =a, где а - число, отличное от нуля. Чему равна степень этого многочлена? Легко заметить, что коэффициенты многочлена f (x) =anxn+an-1xn-1+... +a1x+a0 пронумерованы справа налево числами 0, 1, 2, …, n-1, n и если an≠0, то ст. f (x) =n. Значит, степень многочлена - это наибольший из номеров его коэффициентов, отличных от нуля (при той нумерации, о которой только что говорилось). Вернемся теперь к многочлену f (x) =a, a≠0, и пронумеруем его коэффициенты справа налево числами 0, 1, 2, … коэффициент а при этом получит номер 0, а так как все остальные коэффициенты - нулевые, то это и есть самый большой из номеров коэффициентов данного многочлена, отличных от нуля. Значит ст. f (x) =0.

Таким образом, многочлены нулевой степени - это числа, отличные от нуля.

Осталось выяснить, как обстоит дело со степенью нулевого многочлена. Как известно, все его коэффициенты равны нулю, и поэтому к нему нельзя применить данное выше определение. Так вот, условились нулевому многочлену не присваивать никакой степени, т.е. что он не имеет степени. Такая условность вызвана некоторым обстоятельством, которые будут рассмотрены несколько позже.

Итак, нулевой многочлен степени не имеет; многочлен f (x) =a, где а - число, отличное от нуля, имеет степень 0; степень же всякого другого многочлена, как легко заметить, равна наибольшему показателю степени переменной х, коэффициент при которой равен нулю.

В заключение напомним еще несколько определений. Многочлен второй степени f (x) =ax2+bx+c называется квадратным трехчленом. Многочлен первой степени вида g (x) =x+c называется линейным двучленом.
Схема Горнера.

Схема Горнера - один из простейших способов деления многочлена на бином x-a. Конечно, делением применение схемы Горнера не исчерпывается, но для начала рассмотрим именно это. Применение алгоритма поясним на примерах. Разделим на. Составим таблицу из двух строк: в первой строке запишем коэффициенты многочлена по убыванию степеней переменной. Заметьте, что данный многочлен не содержит х, т.е. коэффициент перед х равен 0. Так как мы делим на, во второй строке запишем единицу:

Начнем заполнять пустые ячейки во второй строке. В первую пустую ячейку запишем 5, просто перенеся ее из соответствующей ячейки первой строки:

Следующую ячейку заполним по такому принципу:

Аналогично заполним и четвертую: :

Для пятой ячейки получим:

И, наконец, для последней, шестой ячейки, имеем:

Задача решена, осталось только записать ответ:

Как видите, числа, расположенные во второй строке (между первым и последним), есть коэффициенты многочлена, полученного после деления на. Последнее число во второй строке означает остачу от деления или, что то же самое, значение многочлена при. Следовательно, если в нашем случае остача равна нулю, то многочлены делятся нацело.

Полученный результат говорит также и о том, что 1 является корнем многочлена.

Приведем еще один пример. Разделим многочлен на. Сразу оговорим, что выражение нужно представить в форме. В схеме Горнера будет учавствовать именно -3.

Если наша цель - найти все корни многочлена, то схему Горнера можно применять несколько раз подряд, - до тех пор, пока мы не исчерпаем все корни. Например, отыщем все корни многочлена. Целые корни нужно искать среди делителей свободного члена, т.е. среди делителей 8. Т.е., целыми корнями могут быть числа -8, -4, -2, -1, 1, 2, 4, 8. Проверим, к примеру, 1:

Итак, в остаче имеем 0, т.е. единица действительно является корнем данного мнгогочлена. Попробуем проверить единицу еще несколько раз. Новую таблицу для этого создавать не будем, а продолжим использование предыдущей:

Вновь в остаче ноль. Продолжим таблицу до тех пор, пока не исчерпаем все возможные значения корней:

Итог: Конечно, данный метод подбора малоэффективен в общем случае, когда корни не являются целыми числами, но для целых корней метод довольно-таки неплох.

РАЦИОНАЛЬНЫЕ КОРНИ МНОГОЧЛЕНА С ЦЕЛЫМИ КОЭФФИЦИЕНТАМИ Нахождение корней многочлена – интересная и достаточно трудная задача, решение которой выходит за границы школьного курса математики. Однако для многочленов с целыми коэффициентами есть простой переборный алгоритм, позволяющий находить все рациональные корни.

Теорема. Если многочлен с целыми коэффициентами имеет рациональный корень (– несократимая дробь),

то числитель дроби является делителем свободного члена, а знаменатель – делителем старшего коэффициента этого многочлена.

Доказательство

Пусть многочлен записан в каноническом виде Подставим и освободимся от знаменателей, домножив на наибольшую степень n:

Перенесем вправо член

Произведение делится на целое число m. По условию дробь несократима, следовательно, числа m и n взаимно просты. Тогда взаимно простыми будут числа m и Если произведение чисел делится на m, а множитель взаимно прост с m, то второй множитель должен делиться на m.

Доказательство делимости старшего коэффициента на знаменатель n доказывается точно так же, перенося вправо член и вынося слева множитель n за скобку.

Сделаем несколько замечаний к доказанной теореме.

Замечания

1) Теорема дает только необходимое условие существования рационального корня. Это означает, что нужно проверить все рациональные числа, с указанным в теореме свойством и отобрать из них те, которые окажутся корнями. Других не будет.

2) Среди делителей надо брать не только положительные, но и отрицательные целые числа.

3) Если старший коэффициент равен 1, то всякий рациональный корень должен быть целым, так как у 1 нет делителей, кроме

Проиллюстрируем теорему и замечания к ней на примерах.

1) Рациональные корни должны быть целыми.

Перебираем делители свободного члена: Положительные числа подставлять нет смысла, так как все коэффициенты многочлена положительны и при

Осталось вычислить F(–1) и F(–2). F(–1)=1+0; F(–2)=0.

Итак, многочлен имеет один целый корень x=–2.

Можем поделить F(x) на x+2:

2) Выписываем возможные значения корней:

Подстановкой убеждаемся, что и Многочлен имеет три различных рациональных корня:

Конечно, корень x = -1 угадывается легко. Потом можно разложить на множители и искать корни квадратного трехчлена обычными приемами.

ДЕЛЕНИЕ МНОГОЧЛЕНОВ. АЛГОРИТМ ЕВКЛИДА

Деление многочленов

Результатом деления является единственная пара многочленов – частное и остаток, которые должны удовлетворять равенству: < делимое > = < делитель > ´ < частное > + <… Если многочлен степени n Pn(x) является делимым,

Пример №1

6х 3 + х 2 – 3х – 2 2х 2 – х – 1

6х 3 ± 3х 2 ± 3х 3х + 2

4х 2 + 0х – 2

4х 2 ± 2х ± 2

Таким образом, 6х 3 + х 2 – 3х – 2 = (2х 2 – х – 1)(3х + 2) + 2х.

Пример №2

a 5 a 4 b a 4 –a 3 b + a 2 b 2 – ab 3 + b 4

± a 4 b ± a 3 b 2

– a 2 b 3 + b 5

± a 2 b 3 ± ab 4

Таким образом, a 5 + b 5 = (a + b)(a 4 –a 3 b + a 2 b 2 – ab 3 + b 4).

Загрузка...