musings.ru

Типовые математические модели. Одноканальная система массового обслуживания (СМО) с ожиданием

Система (в нашем случае вычислительная система) изменяет свои состояния под действием потока заявок (заданий) -поступающие заявки (задания) увеличивают очередь. Число заданий в очереди плюс число заданий, которые обрабатываются ЭВМ (т.е. число заданий в системе), - это характеристика состояния системы . Очередь уменьшается, как только одна из ЭВМ заканчивает обработку (обслуживание) задания. Тотчас же на эту ЭВМ из очереди поступает стоящее впереди (или по какому-либо другому приоритету) задание и очередь уменьшается. Таким образом, число заданий в системе растет благодаря потоку заданий , а уменьшается благодаря окончанию обслуживания с помощью ЭВМ. Устройства обработки заявок в теории СМО называют каналами обслуживания. В этой теории поток заданий (заявок на обслуживание) характеризуется интенсивностью Л. - средним количеством заявок, поступающих в единицу времени (скажем, в час). Среднее время обслуживания (обработки) одного задания /о, определяет так называемую интенсивность потока обслуживания ц,  

Такой подход позволит определить число бригад при различной интенсивности потока и продолжительности обслуживания.  

В универсальном магазине (в отделе самообслуживания) на выходе планируется разместить кассы сканирования для приема от покупателей денег за товары. Интенсивность потока покупателей равна 6 чел. /мин. Интенсивность обслуживания составляет 1,4 чел./мин. Допустимая длина очереди не должна превышать трех человек.  

Учитывая, что увеличение числа заявок (заданий) в системе (т.е. номера состояния) происходит под воздействием их потока с интенсивностью /, а уменьшение - под воздействием потока обслуживания с интенсивностью г, изобразим размеченный граф состояний нашей системы (рис. 3.3).  

Наиболее общей является ситуация, когда интенсивность потока покупателей носит случайный характер, то есть подчиняется распределению Пуассона , а время обслуживания подчиняется закону обратного экспоненциального распределения . Не будем заниматься выводом формул, отметим лишь, что  

В связи с тем что потоки заявок в системе рассчитаны для средних суток, то расчеты длины очереди L и среднего времени ожидания обслуживания Тож, как и другие качественные параметры, будут сделаны неверно, так как интенсивность потока в различные часы суток различна и может меняться до 5 раз. Конечно, можно рассчитать эти параметры за каждый час отдельно, но и это будет неверно, так как СМО будет находиться в постоянном переходном процессе. В этом случае входной поток будет нестационарным и с последействием, так как математическое ожидание числа заказов в единицу времени будет меняться в 3- 5 раз, а число заказов, поступивших, например, в 18 часов, зависит от того, сколько их было фактически за каждый предыдущий час.  

Пример 3.1. Пусть одноканальная СМО с отказами представляет собой один пост ежедневного обслуживания (ЕО) для мойки автомобилей. Заявка - автомобиль, прибывший в момент, когда пост занят, - получает отказ в обслуживании. Интенсивность потока автомобилей Л = 1,0 (автомобиль в час). Средняя продолжительность обслуживания - 1,8 часа. Поток автомобилей и поток обслуживании являются простейшими.  

Параметр потока обслуживания л и приведенная интенсивность потока автомобилей р определены в примере 3.2  

Заметим, что подобный расчет требуется не только при проектировании системы обслуживания он необходим при каждом серьезном изменении интенсивностей потоков заявок, их маршрутизации, трудоемкости обработки, требований к качеству обслуживания . Таким образом, необходимыми расчетными средствами должны быть оснащены не только проектировщики, но и управляющий персонал реально эксплуатируемых систем обслуживания.  

О Пример. В пункте химчистки имеется три аппарата для чистки. Интенсивность потока посетителей А, = 6 (посетителей в час). Интенсивность обслуживания посетителей одним аппаратом i = 3 (посетителей в час). Среднее количество посетителей, покидающих очередь, не дождавшись обслуживания, VBS (посетитель в час). Найти абсолютную пропускную способность пункта.  

Расчет производится на один год с учетом сложившихся в базисном году среднесуточного потока заявок на ремонт и интенсивности обслуживания 1 скважины.  

Величину р называют приведенной плотностью потока требований или интенсивностью нагрузки, р - это среднее число требований, приходящееся на среднее время обслуживания одного требования.  

СМОЬ СМО2 и СМО3 представляют собой пг, п2- и п3- канальные системы с неограниченной очередью и интенсивностью потоков обслуживании // , ju2 и //з, соответственно. Время повторного обслуживания заявки в  

Одноканальная СМО с ожиданием. Система массового обслуживания имеет один канал. Входящий поток заявок на обслуживание - простейший поток с интенсивностью X. Интенсивность потока обслуживания равна ц (т. е. в среднем непрерывно занятый канал будет выдавать ц обслуженных заявок). Длительность обслуживания - случайная величина , подчиненная показательному закону распределения. Поток обслуживании является простейшим пуассо-новским потоком событий . Заявка, поступившая в момент, когда канал занят, становится в очередь и ожидает обслуживания.  

Производительность канала -интенсивность простейшего потока обслуживании П0б (среднее число заявок, обслуживаемое каналом за единицу времени при непрерывной работе) in П0б = ju = onst 100 заявок/день  

Суть упрощений при описании реального предпринимательского процесса моделью СМО состоит в следующем. Во-первых, все однотипные запросы и волеизъявления дотребителей о продаже им того или иного товара или оказании некоторых конкретных услуг представляются в виде так называемого потока заявок на обслуживание. Во-вторых, сложный процесс заключения коммерческого договора купли-продажи , оказания возмездных услуг и их исполнения коммерческим предприятием моделируется аналогично в виде потока обслуживания. При этом модельным аналогом конкретного работника предприятия, который обслуживает потребителя, или конкретного аппарата самообслуживания (колонка АЗС, телефонный канал АТС и т.п.) является так называемый канал обслуживания . В-третьих, вводят допущение о том, что все существенные характеристики как потока заявок, так и потока обслуживания сосредоточены только в единственном их параметре, который называют интенсивностью потока . При этом под интенсивностью потока понимают число событий в соответствующем потоке в единицу времени. Например, под интенсив-  

Пример 3.4. Пусть -канальная СМО представляет собой вычислительный центр (ВЦ) с тремя (п = 3) взаимозаменяемыми ПЭВМ для решения поступающих задач. Поток задач , поступающих на ВЦ, имеет интенсивность Л = 1 задаче в час. Средняя продолжительность обслуживания 7обсл =1,8 час. Поток заявок на решение задач и поток обслуживания этих заявок являются простейшими.  

Полученные выше результаты относились к ситуации, когда интенсивность k потока заявок на восстановление не зависит от числа k находящихся в ремонтном органе необслуженных заявок. В противном случае говорят о замкнутых системах обслуживания. При ограниченном числе R источников заявок обычно считают, что А/ = А(Л - А). Методы расчета марковских систем подобного вида хорошо известны (формулы Энгсета). Рассчитывать немарковские системы значительно сложнее. Особенно труден анализ системы, где интенсивность отказов зависит от объема ЗИПа s (запас s рассматривается как холодный резерв, не подверженный отказам). Между тем этот случай достаточно типичен. Если считать, что в рабочей системе установлены R источников заявок, то интенсивность отказов будет оставаться постоянной и равной АЛ, пока в системе восстановления не скопится k > s заявок. Тогда интенсивность потока заявок начнет убывать по закону А = X. Методика расчета подобной СМО вида M/G/l/(R + s) была предложена автором в статье , оказалась весьма громоздкой и к тому же неприменимой для многоканальных систем восстановления. Однако ап-проксимационные методы, описанные в главе 3, без труда обобщаются и на этот случай. Здесь мы отметим особенности его реализации  

Найдем способ расчета стационарных вероятностей состояний одношналъной системы с указанной зависимостью интенсивности потока от числа заявок в ней и произвольным распределением длительности обслуживания B(t).  

Сам К.Эрланг изучал эту задачу в следующих предположениях поток требований - пуассоновский с интенсивностью J длительность обслуживания распределена по показательному закону , причем средняя продолжительность обслуживания. При названных предположениях К.Эрланг показал, что если число обслуживающих устройств равно /7 , то при стационарном пуас-соновском

Пример . АТС имеет k линий связи. Поток вызовов - простейший с интенсивностью λ в минуту. Среднее время переговоров составляет t минут. Время переговоров имеет показательное распределение. Найти: а) вероятность того, что все линии связи заняты; б) относительную и абсолютную пропускные способности АТС; в) среднее число занятых линий связи. Определить оптимальное число линий связи, достаточное для того, чтобы вероятность отказа не превышала α.
k = 5; λ = 0.6; t = 3.5, α = 0.04.
Решение . Исчисляем показатели обслуживания многоканальной СМО:
Интенсивность потока обслуживания:
μ = 1/3.5 = 0.29
1. Интенсивность нагрузки .
ρ = λ t обс = 0.6 3.5 = 2.1
Интенсивность нагрузки ρ=2.1 показывает степень согласованности входного и выходного потоков заявок канала обслуживания и определяет устойчивость системы массового обслуживания.
3. Вероятность, что канал свободен (доля времени простоя каналов).

Следовательно, 13% в течение часа канал будет не занят, время простоя равно t пр = 7.5 мин.
Вероятность того, что обслуживанием:
занят 1 канал:
p 1 = ρ 1 /1! p 0 = 2.1 1 /1! 0.13 = 0.26
заняты 2 канала:
p 2 = ρ 2 /2! p 0 = 2.1 2 /2! 0.13 = 0.28
заняты 3 канала:
p 3 = ρ 3 /3! p 0 = 2.1 3 /3! 0.13 = 0.19
заняты 4 канала:
p 4 = ρ 4 /4! p 0 = 2.1 4 /4! 0.13 = 0.1
заняты 5 канала:
p 5 = ρ 5 /5! p 0 = 2.1 5 /5! 0.13 = 0.0425 (вероятность того, что все линии связи заняты)
4. Доля заявок, получивших отказ .

Значит, 4% из числа поступивших заявок не принимаются к обслуживанию.
5. Вероятность обслуживания поступающих заявок .
В системах с отказами события отказа и обслуживания составляют полную группу событий, поэтому:
p отк + p обс = 1
Относительная пропускная способность: Q = p обс.
p обс = 1 - p отк = 1 - 0.0425 = 0.96
Следовательно, 96% из числа поступивших заявок будут обслужены. Приемлемый уровень обслуживания должен быть выше 90%.
6. Среднее число занятых линий связи
n з = ρ p обс = 2.1 0.96 = 2.01 линии.
Среднее число простаивающих каналов .
n пр = n - n з = 5 - 2.01 = 3 канала.
7. Коэффициент занятости каналов обслуживанием .
K 3 = n 3 /n = 2.01/5 = 0.4
Следовательно, система на 40% занята обслуживанием.
8. Абсолютная пропускная способность .
A = p обс λ = 0.96 0.6 = 0.57 заявок/мин.
9. Среднее время простоя СМО .
t пр = p отк t обс = 0.0425 3.5 = 0.15 мин.
12. Среднее число обслуживаемых заявок .
L обс = ρ Q = 2.1 0.96 = 2.01 ед.

Для определения оптимального число линий связи, достаточное для того, чтобы вероятность отказа не превышала 0.04, воспользуемся формулой:

Для наших данных:

где
Подбирая количество линий связей, находим, что при k=6, p отк = 0.0147 < 0.04, p 0 = 0.12
Скачать решение

1. Коммерческая фирма занимается посреднической деятельностью по продаже автомобилей и осуществляет часть переговоров по 3 телефонным линиям. В среднем поступает 75 звонков в час. Среднее время предварительных переговоров справочного характера составляет 2 мин.

2. Пункт по ремонту квартир работает в режиме отказа и состоит из двух бригад. Интенсивность потока заявок λ, производительность пункта μ. Определить вероятность того, что оба каналы свободны, один канал занят, оба канала заняты, вероятность отказа, относительную и абсолютную пропускные способности, средне число занятых бригад.

3. В вычислительный центр коллективного пользования с тремя ЭВМ поступают заказы от предприятий на вычислительные работы. Если работают все три ЭВМ, то вновь поступающий заказ не принимается, и предприятие вынуждено обратиться в другой вычислительный центр. Среднее время работы с одним заказом составляет 3 ч. Интенсивность потока заявок 0,25 (1/ч). Найти предельные вероятности состояний и показатели эффективности работы вычислительного центра.

Многоканальная СМО с ограниченной длиной очереди

2. В мини-маркет поступает поток покупателей с интенсивностью 6 покупателей в 1 мин., которых обслуживают три контролера-кассира с интенсивностью 2 покупателя в 1 мин. длина очереди ограничена 5 покупателями.

3. На плодоовощную базу в среднем через 30 мин. прибывают автомашины с плодоовощной продукцией. Среднее время разгрузки одной машины составляют 1.5 ч. Разгрузку производят две бригады. На территории базы у дебаркадера могут находиться в очереди в ожидании разгрузки не более 4 автомашин.

4. На автомойку в среднем за час приезжают 9 автомобилей, но если в очереди уже находятся 4 автомобиля, вновь подъезжающие клиенты, как правило, не встают в очередь, а проезжают мимо. Среднее время мойки автомобиля составляет 20 мин., а мест для мойки всего два. Средняя стоимость мойки автомобиля составляет 70 руб. Определите среднюю величину потери выручки автомойки в течение дня.

5. Магазин получает овощи из теплиц. Автомобили с грузом прибывают с интенсивностью λ машин в день. Подсобные помещения позволяют обрабатывать и хранить товар, привезенный m автомобилями. В магазине работают n фасовщиков, каждый из которых в среднем может обрабатывать товар с одной машины в течении t обсл. часов. Продолжительность рабочего дня при сменной работе составляет 12 часов. Определить емкость подсобных помещений при заданной вероятности Р* обсл. полной обработки товаров.

6. Имеется автозаправочная станция с 2-мя колонками. В очереди не может быть больше 3-х машин. Интенсивность и среднее время заправки равны 2.1 и 0.55. Найти вероятность простоя системы.
Решение :
Интенсивность потока обслуживания равна μ = 1/0.55 = 1.82. Отсюда, интенсивность нагрузки составит ρ = λ t обс = 2.1 0.55 = 1.16. Заметим, что интенсивность нагрузки ρ=1.16 показывает степень согласованности входного и выходного потоков заявок канала обслуживания и определяет устойчивость системы массового обслуживания.
Поскольку 1.16<2, то процесс обслуживания будет стабилен.
Вероятность простоя системы выражается следующей формулой:


Следовательно, 28% в течение часа канал будет не занят, время простоя равно t пр = 0.28*60 мин. = 16.9 мин.

Многоканальная СМО с неограниченной очередью

1. Построить две модели многоканальной системы массового обслуживания – с бесконечной и ограниченной очередью. Вычислить Р 0 – вероятность простаивания всех каналов обслуживания, n w – среднее число клиентов, ожидающих обслуживания, t w – среднее время ожидания обслуживания, W – вероятность обязательного пребывания в очереди.

2. В расчетном узле магазина самообслуживания работают 3 кассы. интенсивность входного потока составляет 5 покупателей в минуту. интенсивность обслуживания каждого контролера-кассира составляет 2 покупателя минуту.

Рекомендации к решению задачи: здесь n = 3; λ = 5 ед. в мин.; μ = 2 ед. в мин.
В качестве количества заявок в очереди можно указать, например, m = 4. тогда будут рассчитаны соответствующие вероятность появления данных заявок.

3. В аудиторскую фирму поступает простейший поток заявок на обслуживание с интенсивностью λ = 1,5 заявки в день. Время обслуживания распределено по показательному закону и равно в среднем трем дням. Аудиторская фирма располагает пятью независимыми бухгалтерами, выполняющими аудиторские проверки (обслуживание заявок). Очередь заявок не ограничена. Дисциплина очереди не регламентирована. Определите вероятностные характеристики аудиторской фирмы как системы массового обслуживания, работающей в стационарном режиме.

4. В мастерской по ремонту холодильников работает n мастеров. В среднем в течение дня поступает в ремонт λ холодильников. Поток заявок пуассоновский. Время ремонта подчиняется экспоненциальному закону распределения вероятностей, в среднем в течение дня при семичасовом рабочем дне каждый из мастеров ремонтирует μ холодильников.
Требуется определить: 1) вероятность того, что все мастера свободны от ремонта холодильников, 2) вероятность того, что все мастера заняты ремонтом, 3) среднее время ремонта одного холодильника, 4) в среднем время ожидания начала ремонта для каждого холодильника, 5) среднюю длину очереди, которая определяет необходимое место для хранения холодильника, требующего ремонта, 6) среднее число мастеров, свободных от работы.

Рассмотрим способы моделирования на ЭВМ потоков заявок, поступающих в систему массового обслуживания. Сначала остановимся на достаточно простом и вместе с тем наиболее распространенном случае, когща в систему поступает ординарный стационарный поток однородных событий с ограниченным последействием (поток типа Пальма).

Любой поток типа Пальма может быть задан функцией плотности случайных интервалов между последовательными моментами - поступления заявок. Для моделирования его на ЭВМ достаточно построить необходимое число реализаций потока, т. е. таких неслучайных последовательностей моментов

поступления заявок в систему, интервалы между которыми являлись бы возможными значениями случайных величин описываемых функцией плотности

Процедура построения последовательности состоит в следующем. Сначала формируется Функция плотности может быть определена через по формуле Пальма (4.4). Тогда, исходя из наличия в ЭВМ электронного или алгоритмического датчика случайных чисел с равномерным распределением в интервале (0,1), приступаем к формированию Для этого одним из способов, рассмотренных в главе П, преобразуем случайное число в случайное число имеющее функцию плотности Получив полагаем

В дальнейшем процедура получения любого совпадает с процедурой формирования т. е. очередное случайное число преобразуется в случайное число имеющее функцию плотности и

Рассмотрим некоторые примеры, часто встречающиеся при решении практических задач методом статистического моделирования.

Пример 1. Простейший (пауссоновский) поток.

Как отмечалось выше, простейший (пауссоновский) поток является стационарным ординарным потоком однородных событий без последействия, т. е. одним из возможных частных случаев потоков типа Пальма. Функция плотности для простейшего потока имеет вид показательного распределения (4.6):

где - интенсивность потока, определяющая среднее значение числа заявок, поступающих в единицу времени.

Чтобы определить функцию плотности для первого интервала, воспользуемся формулой Пальма.

После несложных вычислений получаем:

Отсюда следует, что функция плотности первого интервала для простейшего потока имеет тот же вид, что и Этим свойством в общем случае, не обладают другие потоки типа Пальма.

Таким образом, для формирования реализаций простейшего потока необходимо иметь последовательность случайных чисел имеющих показательное распределение (4.6) с параметром К. Методику получения такой последовательности мы рассматривали в главе II. В соответствии с (2.15) случайные числа могут быть получены по формуле

где - случайные числа с равномерным распределением в интервале (0,1).

Последовательность моментов поступления заявок будет следующей:

Пример 2. Поток с равномерным распределением интервалов

Функция плотности рассматриваемого потока имеет вид равномерного распределения:

Можно показать, что среднее значение (математическое ожидание) случайной величины равно Поэтому среднее число заявок, поступивших в единицу времени (интенсивность потока):

Определим функцию плотности для первого интервала. По формуле Пальма аналогично формуле (4.11):

Заметим, что среднее значение длительности первого интервала может быть получено как математическое ожидание случайной величины, имеющей функцию плотности (4.16):

Перейдем к формированию первого интервала Для этого, имея случайные числа с равномерным законом распределения в интервале (0,1), необходимо получить случайное число соответствующее функции плотности (4.16). Преобразуем соотношение (4.16) следующим образом. Подставим в него вместо величины ее значение из равенства (4.15). Тогда можно записать функцию плотности

Необходимо отметить, что потоки, рассмотренные в примерах 1 и 2, отличаются благоприятной особенностью: интегралы в формуле Пальма и формулах преобразования случайных чисел берутся в конечном виде. В общем случае эти интегралы могут оказаться неберущимися. Кроме того, функции плотности иногда задаются таблично по (результатам обработки статистического материала. На практике в такого рода ситуациях пользуются приближенными методами. Интеграл в формуле Пальма вычисляется обычно для заданного набора численными методами. Это не оказывается существенно на объеме вычислений, так как формула Пальма применяется только один раз для данного потока. Преобразование случайных чисел выполняется, как правило, методом кусочной аппроксимации функции плотности в соответствии с соотношениями (2.23), (2.24) и (2.25).

Задача 1. На диспетчерский пульт поступает поток заявок, который является потоком Эрланга второго порядка. Интенсивность потока заявок равна 6 заявок в час. Если диспетчер в случайный момент оставляет пульт, то при первой же очередной заявке он обязан вернуться к пульту. Найти плотность распределения времени ожидания очередной заявки и построить ее график. Вычислить вероятность того, что диспетчер сможет отсутствовать от 10 до 20 минут. Решение . Поскольку поток Эрланга второго порядка является стационарным потоком с ограниченным последействием, то для него справедлива формула Пальма

где f1(θ)- плотность распределения вероятностей для времени ожидания первого ближайшего события;
λ - интенсивность потока;
- порядок потока;
(θ) - функция распределения вероятностей для времени между двумя соседними событиями потока Эрланга - го порядка (Э).
Известно, что функция распределения для потока Э имеет вид

. (2)

По условиям задачи поток заявок является Эрланговским порядка =2. Тогда из (1) и (2) получим
.
Из последнего соотношения при λ=6 будем иметь

f1(θ)=3е-6θ(1+6 θ), θ≥0. (3)

Построим график функции f1(θ) . При θ <0 имеем f1(θ) =0 . При θ =0 , f1(0)=3 . Рассмотрим предел

При вычислении предела для раскрытия неопределенности типа использовано правило Лопиталя . По результатам исследований строим график функции f1(θ) (Рис. 1).


Обратим внимание на размерности времени в тексте задачи: для интенсивности это заявки в час, для времени-минуты. Перейдем к одним единицам времени: 10 мин=1/6 час, 20 мин=1/3 час. Для этих значений можно вычислить f1(θ) и уточнить характер кривой


Эти ординаты указаны на графике над соответствующими точками кривой.
Из курса теории вероятностей известно, что вероятность попадания случайной величины Х в отрезок [α, β] численно равна площади под кривой плотности распределения вероятностей f(х) . Эта площадь выражается определенным интегралом

Следовательно, искомая вероятность равна

Этот интеграл легко вычисляется по частям, если положить
U=1+6θ и dV=е-6θ . Тогда dU=6 и V= .
Используя формулу получим

Ответ: вероятность того, что диспетчер сможет отсутствовать от 10 до 20 минут равна 0,28.

Задача 2. Дисплейный зал имеет 5 дисплеев. Поток пользователей простейший. Среднее число пользователей, посещающих дисплейный зал за сутки, равно 140. Время обработки информации одним пользователем на одном дисплее распределено по показательному закону и составляет в среднем 40 минут. Определить, существует ли стационарный режим работы зала; вероятность того, что пользователь застанет все дисплеи занятыми; среднее число пользователей в дисплейном зале; среднее число пользователей в очереди; среднее время ожидания свободного дисплея; среднее время пребывания пользователя в дисплейном зале. Решение. Рассматриваемая в задаче СМО относится к классу многоканальных систем с неограниченной очередью. Число каналов =5. Найдем λ-интенсивность потока заявок: где (час.) - среднее время между двумя последовательными заявками входящего потока пользователей. Тогда польз./час.

Найдем -интенсивность потока обслуживания: , где М[Т обсл.]=40 мин=0,67 часа - среднее время обслуживания одного пользователя одним дисплеем,

тогда польз/час.

Таким образом, классификатор данной системы имеет вид СМО (5, ∞; 5,85; 1,49).
Вычислим коэффициент загрузки СМО . Известно, что для СМО такого класса стационарный режим существует, если отношение коэффициента загрузки системы к числу каналов меньше единицы. Находим это отношение
.
Следовательно, стационарный режим существует. Предельное распределение вероятностей состояний вычисляется по формулам


Поскольку =5, имеем

Вычислим Р*- вероятность того, что пользователь застанет все дисплеи занятыми. Очевидно, она равна сумме вероятностей таких событий: все дисплеи заняты, очереди нет (р5); все дисплеи заняты, один пользователь в очереди (р6); все дисплеи заняты, два пользователя в очереди (р7) и так далее. Поскольку для полной группы событий сумма вероятностей этих событий равна единице, то справедливо равенство

Р*=р5+р6+р7+…=1 - ро - р1 - р2 - р3 - р4.

Найдем эти вероятности: ро =0,014; р1 =3,93*0,014; р2 =7,72*0,014; р3 =10,12*0,014; р4 =9,94*0,014.
Вынося за скобки общий множитель, получим
Р*=1-0,0148*(1+3,93+7,72+10,12+9,94)=1-0,014*32,71=1-0,46=0,54.
Используя формулы для вычисления показателей эффективности? найдем:

  • 1. среднее число пользователей в очереди

2. среднее число пользователей в дисплейном зале

3. среднее время ожидания свободного дисплея

4. среднее время пребывания пользователя в дисплейном зале

Ответ: стационарный режим работы дисплейного зала существует и характеризуется следующими показателями Р* =0,54; пользователя; пользователя; ; .

Задача 3. В двухканальную систему массового обслуживания (СМО) с отказами поступает стационарный пуассоновский поток заявок. Время между поступлениями двух последовательных заявок распределено по показательному закону с параметром λ=5 заявок в минуту. Длительность обслуживания каждой заявки равна 0,5 мин. Методом Монте-Карло найти среднее число обслуженных заявок за время 4 мин. Указание: провести три испытания. Решение. Изобразим статистическое моделирование работы заданной СМО с помощью временных диаграмм. Введем следующие обозначения для временных осей:
Вх -входящий поток заявок, здесь ti -моменты поступления заявок; Ti -интервалы времени между двумя последовательными заявками. Очевидно, что ti =ti -1 i .
К1-первый канал обслуживания;
К2-второй канал обслуживания; здесь жирные линии на временной оси обозначают интервалы занятости канала. Если оба канала свободны, то заявка становится под обслуживание в канал К1, в случае его занятости заявка обслуживается каналом К2.
Если заняты оба канала, то заявка покидает СМО необслуженной.
Вых ОБ-выходящий поток обслуженных заявок.
Вых ПТ-выходящий поток потерянных заявок за счет отказов СМО (случай занятости обоих каналов).
Статистические испытания продолжаются в течение временного интервала . Очевидно, что любое превышение времени tmax влечет за собой сброс заявки в выходящий поток Вых ПТ. Так на рис. 3 заявка №10, пришедшая в систему в момент t10 , не успевает обслужиться до момента tmax , так как t10+Тобсл.>tmax . Следовательно, она не принимается свободным каналом К1 на обслуживание и сбрасывается в Вых ПТ, получая отказ.


Рис. 3

Из временных диаграмм видно, что необходимо научиться моделировать интервалы Т i . Применим метод обратных функций. Поскольку случайная величина Тi распределена по показательному закону с параметром λ =5, то плотность распределения имеет вид f (τ)=5е-5τ . Тогда значение F(Ti) функции распределения вероятностей определяется интегралом

.

Известно, что область значений функции распределения F (T ) есть отрезок . Выбираем из таблицы случайных чисел число и определяем Т i из равенства , откуда . Однако, если . Поэтому можно сразу получать из таблицы случайных чисел реализации . Следовательно,
е-5Т i = ri , или –5Т i = lnri , откуда . Результаты вычислений удобно заносить в таблицу.
Для проведения испытания №1 были взяты случайные числа из приложения 2, начиная с первого числа первой строки. Далее выборка осуществлялась по строкам. Проведем еще два испытания.
Обратите внимание на выборку случайных чисел из таблицы приложения 2, если в испытании №1 последнее случайное число для заявки №16 было 0,37 (первое случайное число во второй строке), то испытание №2 начинается со следующего за ним случайного числа 0,54. Испытание №2 содержит последним случайное число 0,53 (пятое число в третьей строке). Следовательно, третье испытание начнется с числа 0,19. Вообще в пределах одной серии испытаний случайные числа из таблицы выбираются без пропусков и вставок по определенному порядку, например, по строкам.

Таблица 1. ИСПЫТАНИЕ №1

№ зая-вки
i

Сл. число
ri

-ln ri
Тi

Момент поступления заявки
ti=ti-1+Ti

Момент окончания обслужив.
ti+0,50

Счетчик заявок

К1
Таблица 2 ИСПЫТАНИЕ №2

№ зая-вки
i

Сл. число
ri

-ln ri
Т i

Момент поступления заявки
ti=ti-1+Ti

Момент окончания обслужив.
ti+0,50

Счетчик заявок

Таблица №3 ИСПЫТАНИЕ №3

№ зая-вки
i

Сл. число
ri

-ln ri
Т i

Момент поступления заявки
ti=ti-1+Ti

Момент окончания обслужив.
ti+0,50

Счетчик заявок

К1

Таким образом, по результатам трех испытаний число обслуженных заявок составило соответственно: х1 =9, х2 =9, х3 =8. Найдем среднее число обслуженных заявок:

Ответ: среднее число заявок, обслуженных СМО за 4 минуты, равно 8,6(6).

Загрузка...