musings.ru

Методы математической статистики. Регрессионный анализ

В предыдущих заметках предметом анализа часто становилась отдельная числовая переменная, например, доходность взаимных фондов, время загрузки Web-страницы или объем потребления безалкогольных напитков. В настоящей и следующих заметках мы рассмотрим методы предсказания значений числовой переменной в зависимости от значений одной или нескольких других числовых переменных.

Материал будет проиллюстрирован сквозным примером. Прогнозирование объема продаж в магазине одежды. Сеть магазинов уцененной одежды Sunflowers на протяжении 25 лет постоянно расширялась. Однако в настоящее время у компании нет систематического подхода к выбору новых торговых точек. Место, в котором компания собирается открыть новый магазин, определяется на основе субъективных соображений. Критериями выбора являются выгодные условия аренды или представления менеджера об идеальном местоположении магазина. Представьте, что вы - руководитель отдела специальных проектов и планирования. Вам поручили разработать стратегический план открытия новых магазинов. Этот план должен содержать прогноз годового объема продаж во вновь открываемых магазинах. Вы полагаете, что торговая площадь непосредственно связана с объемом выручки, и хотите учесть этот факт в процессе принятия решения. Как разработать статистическую модель, позволяющую прогнозировать годовой объем продаж на основе размера нового магазина?

Как правило, для предсказания значений переменной используется регрессионный анализ. Его цель - разработать статистическую модель, позволяющую предсказывать значения зависимой переменной, или отклика, по значениям, по крайней мере одной, независимой, или объясняющей, переменной. В настоящей заметке мы рассмотрим простую линейную регрессию - статистический метод, позволяющий предсказывать значения зависимой переменной Y по значениям независимой переменной X . В последующих заметках будет описана модель множественной регрессии, предназначенная для предсказания значений независимой переменной Y по значениям нескольких зависимых переменных (Х 1 , Х 2 , …, X k ).

Скачать заметку в формате или , примеры в формате

Виды регрессионных моделей

где ρ 1 – коэффициент автокорреляции; если ρ 1 = 0 (нет автокорреляции), D ≈ 2; если ρ 1 ≈ 1 (положительная автокорреляции), D ≈ 0; если ρ 1 = -1 (отрицательная автокорреляции), D ≈ 4.

На практике применение критерия Дурбина-Уотсона основано на сравнении величины D с критическими теоретическими значениями d L и d U для заданного числа наблюдений n , числа независимых переменных модели k (для простой линейной регрессии k = 1) и уровня значимости α. Если D < d L , гипотеза о независимости случайных отклонений отвергается (следовательно, присутствует положительная автокорреляция); если D > d U , гипотеза не отвергается (то есть автокорреляция отсутствует); если d L < D < d U , нет достаточных оснований для принятия решения. Когда расчётное значение D превышает 2, то с d L и d U сравнивается не сам коэффициент D , а выражение (4 – D ).

Для вычисления статистики Дурбина-Уотсона в Excel обратимся к нижней таблице на рис. 14 Вывод остатка . Числитель в выражении (10) вычисляется с помощью функции =СУММКВРАЗН(массив1;массив2), а знаменатель =СУММКВ(массив) (рис. 16).

Рис. 16. Формулы расчета статистики Дурбина-Уотсона

В нашем примере D = 0,883. Основной вопрос заключается в следующем - какое значение статистики Дурбина-Уотсона следует считать достаточно малым, чтобы сделать вывод о существовании положительной автокорреляции? Необходимо соотнести значение D с критическими значениями (d L и d U ), зависящими от числа наблюдений n и уровня значимости α (рис. 17).

Рис. 17. Критические значения статистики Дурбина-Уотсона (фрагмент таблицы)

Таким образом, в задаче об объеме продаж в магазине, доставляющем товары на дом, существуют одна независимая переменная (k = 1), 15 наблюдений (n = 15) и уровень значимости α = 0,05. Следовательно, d L = 1,08 и d U = 1,36. Поскольку D = 0,883 < d L = 1,08, между остатками существует положительная автокорреляция, метод наименьших квадратов применять нельзя.

Проверка гипотез о наклоне и коэффициенте корреляции

Выше регрессия применялась исключительно для прогнозирования. Для определения коэффициентов регрессии и предсказания значения переменной Y при заданной величине переменной X использовался метод наименьших квадратов. Кроме того, мы рассмотрели среднеквадратичную ошибку оценки и коэффициент смешанной корреляции. Если анализ остатков подтверждает, что условия применимости метода наименьших квадратов не нарушаются, и модель простой линейной регрессии является адекватной, на основе выборочных данных можно утверждать, что между переменными в генеральной совокупности существует линейная зависимость.

Применение t -критерия для наклона. Проверяя, равен ли наклон генеральной совокупности β 1 нулю, можно определить, существует ли статистически значимая зависимость между переменными X и Y . Если эта гипотеза отклоняется, можно утверждать, что между переменными X и Y существует линейная зависимость. Нулевая и альтернативная гипотезы формулируются следующим образом: Н 0: β 1 = 0 (нет линейной зависимости), Н1: β 1 ≠ 0 (есть линейная зависимость). По определению t -статистика равна разности между выборочным наклоном и гипотетическим значением наклона генеральной совокупности, деленной на среднеквадратичную ошибку оценки наклона:

(11) t = (b 1 β 1 ) / S b 1

где b 1 – наклон прямой регрессии по выборочным данным, β1 – гипотетический наклон прямой генеральной совокупности, , а тестовая статистика t имеет t -распределение с n – 2 степенями свободы.

Проверим, существует ли статистически значимая зависимость между размером магазина и годовым объемом продаж при α = 0,05. t -критерий выводится наряду с другими параметрами при использовании Пакета анализа (опция Регрессия ). Полностью результаты работы Пакета анализа приведены на рис. 4, фрагмент, относящийся к t-статистике – на рис. 18.

Рис. 18. Результаты применения t

Поскольку число магазинов n = 14 (см. рис.3), критическое значение t -статистики при уровне значимости α = 0,05 можно найти по формуле: t L =СТЬЮДЕНТ.ОБР(0,025;12) = –2,1788, где 0,025 – половина уровня значимости, а 12 = n – 2; t U =СТЬЮДЕНТ.ОБР(0,975;12) = +2,1788.

Поскольку t -статистика = 10,64 > t U = 2,1788 (рис. 19), нулевая гипотеза Н 0 отклоняется. С другой стороны, р -значение для Х = 10,6411, вычисляемое по формуле =1-СТЬЮДЕНТ.РАСП(D3;12;ИСТИНА), приближенно равно нулю, поэтому гипотеза Н 0 снова отклоняется. Тот факт, что р -значение почти равно нулю, означает, что если бы между размерами магазинов и годовым объемом продаж не существовало реальной линейной зависимости, обнаружить ее с помощью линейной регрессии было бы практически невозможно. Следовательно, между средним годовым объемом продаж в магазинах и их размером существует статистически значимая линейная зависимость.

Рис. 19. Проверка гипотезы о наклоне генеральной совокупности при уровне значимости, равном 0,05, и 12 степенях свободы

Применение F -критерия для наклона. Альтернативным подходом к проверке гипотез о наклоне простой линейной регрессии является использование F -критерия. Напомним, что F -критерий применяется для проверки отношения между двумя дисперсиями (подробнее см. ). При проверке гипотезы о наклоне мерой случайных ошибок является дисперсия ошибки (сумма квадратов ошибок, деленная на количество степеней свободы), поэтому F -критерий использует отношение дисперсии, объясняемой регрессией (т.е. величины SSR , деленной на количество независимых переменных k ), к дисперсии ошибок (MSE = S Y X 2 ).

По определению F -статистика равна среднему квадрату отклонений, обусловленных регрессией (MSR), деленному на дисперсию ошибки (MSE): F = MSR / MSE , где MSR = SSR / k , MSE = SSE /(n – k – 1), k – количество независимых переменных в регрессионной модели. Тестовая статистика F имеет F -распределение с k и n – k – 1 степенями свободы.

При заданном уровне значимости α решающее правило формулируется так: если F > F U , нулевая гипотеза отклоняется; в противном случае она не отклоняется. Результаты, оформленные в виде сводной таблицы дисперсионного анализа, приведены на рис. 20.

Рис. 20. Таблица дисперсионного анализа для проверки гипотезы о статистической значимости коэффициента регрессии

Аналогично t -критерию F -критерий выводится в таблицу при использовании Пакета анализа (опция Регрессия ). Полностью результаты работы Пакета анализа приведены на рис. 4, фрагмент, относящийся к F -статистике – на рис. 21.

Рис. 21. Результаты применения F -критерия, полученные с помощью Пакета анализа Excel

F-статистика равна 113,23, а р -значение близко к нулю (ячейка Значимость F ). Если уровень значимости α равен 0,05, определить критическое значение F -распределения с одной и 12 степенями свободы можно по формуле F U =F.ОБР(1-0,05;1;12) = 4,7472 (рис. 22). Поскольку F = 113,23 > F U = 4,7472, причем р -значение близко к 0 < 0,05, нулевая гипотеза Н 0 отклоняется, т.е. размер магазина тесно связан с его годовым объемом продаж.

Рис. 22. Проверка гипотезы о наклоне генеральной совокупности при уровне значимости, равном 0,05, с одной и 12 степенями свободы

Доверительный интервал, содержащий наклон β 1 . Для проверки гипотезы о существовании линейной зависимости между переменными можно построить доверительный интервал, содержащий наклон β 1 и убедиться, что гипотетическое значение β 1 = 0 принадлежит этому интервалу. Центром доверительного интервала, содержащего наклон β 1 , является выборочный наклон b 1 , а его границами - величины b 1 ± t n –2 S b 1

Как показано на рис. 18, b 1 = +1,670, n = 14, S b 1 = 0,157. t 12 =СТЬЮДЕНТ.ОБР(0,975;12) = 2,1788. Следовательно, b 1 ± t n –2 S b 1 = +1,670 ± 2,1788 * 0,157 = +1,670 ± 0,342, или + 1,328 ≤ β 1 ≤ +2,012. Таким образом, наклон генеральной совокупности с вероятностью 0,95 лежит в интервале от +1,328 до +2,012 (т.е. от 1 328 000 до 2 012 000 долл.). Поскольку эти величины больше нуля, между годовым объемом продаж и площадью магазина существует статистически значимая линейная зависимость. Если бы доверительный интервал содержал нуль, между переменными не было бы зависимости. Кроме того, доверительный интервал означает, что каждое увеличение площади магазина на 1 000 кв. футов приводит к увеличению среднего объема продаж на величину от 1 328 000 до 2 012 000 долларов.

Использование t -критерия для коэффициента корреляции. был введен коэффициент корреляции r , представляющий собой меру зависимости между двумя числовыми переменными. С его помощью можно установить, существует ли между двумя переменными статистически значимая связь. Обозначим коэффициент корреляции между генеральными совокупностями обеих переменных символом ρ. Нулевая и альтернативная гипотезы формулируются следующим образом: Н 0 : ρ = 0 (нет корреляции), Н 1 : ρ ≠ 0 (есть корреляция). Проверка существования корреляции:

где r = + , если b 1 > 0, r = – , если b 1 < 0. Тестовая статистика t имеет t -распределение с n – 2 степенями свободы.

В задаче о сети магазинов Sunflowers r 2 = 0,904, а b 1 - +1,670 (см. рис. 4). Поскольку b 1 > 0, коэффициент корреляции между объемом годовых продаж и размером магазина равен r = +√0,904 = +0,951. Проверим нулевую гипотезу, утверждающую, что между этими переменными нет корреляции, используя t -статистику:

При уровне значимости α = 0,05 нулевую гипотезу следует отклонить, поскольку t = 10,64 > 2,1788. Таким образом, можно утверждать, что между объемом годовых продаж и размером магазина существует статистически значимая связь.

При обсуждении выводов, касающихся наклона генеральной совокупности, доверительные интервалы и критерии для проверки гипотез являются взаимозаменяемыми инструментами. Однако вычисление доверительного интервала, содержащего коэффициент корреляции, оказывается более сложным делом, поскольку вид выборочного распределения статистики r зависит от истинного коэффициента корреляции.

Оценка математического ожидания и предсказание индивидуальных значений

В этом разделе рассматриваются методы оценки математического ожидания отклика Y и предсказания индивидуальных значений Y при заданных значениях переменной X .

Построение доверительного интервала. В примере 2 (см. выше раздел Метод наименьших квадратов ) регрессионное уравнение позволило предсказать значение переменной Y X . В задаче о выборе места для торговой точки средний годовой объем продаж в магазине площадью 4000 кв. футов был равен 7,644 млн. долл. Однако эта оценка математического ожидания генеральной совокупности является точечной. для оценки математического ожидания генеральной совокупности была предложена концепция доверительного интервала. Аналогично можно ввести понятие доверительного интервала для математического ожидания отклика при заданном значении переменной X :

где , = b 0 + b 1 X i – предсказанное значение переменное Y при X = X i , S YX – среднеквадратичная ошибка, n – объем выборки, X i - заданное значение переменной X , µ Y | X = X i – математическое ожидание переменной Y при Х = Х i , SSX =

Анализ формулы (13) показывает, что ширина доверительного интервала зависит от нескольких факторов. При заданном уровне значимости возрастание амплитуды колебаний вокруг линии регрессии, измеренное с помощью среднеквадратичной ошибки, приводит к увеличению ширины интервала. С другой стороны, как и следовало ожидать, увеличение объема выборки сопровождается сужением интервала. Кроме того, ширина интервала изменяется в зависимости от значений X i . Если значение переменной Y предсказывается для величин X , близких к среднему значению , доверительный интервал оказывается уже, чем при прогнозировании отклика для значений, далеких от среднего.

Допустим, что, выбирая место для магазина, мы хотим построить 95%-ный доверительный интервал для среднего годового объема продаж во всех магазинах, площадь которых равна 4000 кв. футов:

Следовательно, средний годовой объем продаж во всех магазинах, площадь которых равна 4 000 кв. футов, с 95% -ной вероятностью лежит в интервале от 6,971 до 8,317 млн. долл.

Вычисление доверительного интервала для предсказанного значения. Кроме доверительного интервала для математического ожидания отклика при заданном значении переменной X , часто необходимо знать доверительный интервал для предсказанного значения. Несмотря на то что формула для вычисления такого доверительного интервала очень похожа на формулу (13), этот интервал содержит предсказанное значение, а не оценку параметра. Интервал для предсказанного отклика Y X = Xi при конкретном значении переменной X i определяется по формуле:

Предположим, что, выбирая место для торговой точки, мы хотим построить 95%-ный доверительный интервал для предсказанного годового объема продаж в магазине, площадь которого равна 4000 кв. футов:

Следовательно, предсказанный годовой объем продаж в магазине, площадь которого равна 4000 кв. футов, с 95%-ной вероятностью лежит в интервале от 5,433 до 9,854 млн. долл. Как видим, доверительный интервал для предсказанного значения отклика намного шире, чем доверительный интервал для его математического ожидания. Это объясняется тем, что изменчивость при прогнозировании индивидуальных значений намного больше, чем при оценке математического ожидания.

Подводные камни и этические проблемы, связанные с применением регрессии

Трудности, связанные с регрессионным анализом:

  • Игнорирование условий применимости метода наименьших квадратов.
  • Ошибочная оценка условий применимости метода наименьших квадратов.
  • Неправильный выбор альтернативных методов при нарушении условий применимости метода наименьших квадратов.
  • Применение регрессионного анализа без глубоких знаний о предмете исследования.
  • Экстраполяция регрессии за пределы диапазона изменения объясняющей переменной.
  • Путаница между статистической и причинно-следственной зависимостями.

Широкое распространение электронных таблиц и программного обеспечения для статистических расчетов ликвидировало вычислительные проблемы, препятствовавшие применению регрессионного анализа. Однако это привело к тому, что регрессионный анализ стали применять пользователи, не обладающие достаточной квалификацией и знаниями. Откуда пользователям знать об альтернативных методах, если многие из них вообще не имеют ни малейшего понятия об условиях применимости метода наименьших квадратов и не умеют проверять их выполнение?

Исследователь не должен увлекаться перемалыванием чисел - вычислением сдвига, наклона и коэффициента смешанной корреляции. Ему нужны более глубокие знания. Проиллюстрируем это классическим примером, взятым из учебников. Анскомб показал, что все четыре набора данных, приведенных на рис. 23, имеют одни и те же параметры регрессии (рис. 24).

Рис. 23. Четыре набора искусственных данных

Рис. 24. Регрессионный анализ четырех искусственных наборов данных; выполнен с помощью Пакета анализа (кликните на рисунке, чтобы увеличить изображение)

Итак, с точки зрения регрессионного анализа все эти наборы данных совершенно идентичны. Если бы анализ был на этом закончен, мы потеряли бы много полезной информации. Об этом свидетельствуют диаграммы разброса (рис. 25) и графики остатков (рис. 26), построенные для этих наборов данных.

Рис. 25. Диаграммы разброса для четырех наборов данных

Диаграммы разброса и графики остатков свидетельствуют о том, что эти данные отличаются друг от друга. Единственный набор, распределенный вдоль прямой линии, - набор А. График остатков, вычисленных по набору А, не имеет никакой закономерности. Этого нельзя сказать о наборах Б, В и Г. График разброса, построенный по набору Б, демонстрирует ярко выраженную квадратичную модель. Этот вывод подтверждается графиком остатков, имеющим параболическую форму. Диаграмма разброса и график остатков показывают, что набор данных В содержит выброс. В этой ситуации необходимо исключить выброс из набора данных и повторить анализ. Метод, позволяющий обнаруживать и исключать выбросы из наблюдений, называется анализом влияния. После исключения выброса результат повторной оценки модели может оказаться совершенно иным. Диаграмма разброса, построенная по данным из набора Г, иллюстрирует необычную ситуацию, в которой эмпирическая модель значительно зависит от отдельного отклика (Х 8 = 19, Y 8 = 12,5). Такие регрессионные модели необходимо вычислять особенно тщательно. Итак, графики разброса и остатков являются крайне необходимым инструментом регрессионного анализа и должны быть его неотъемлемой частью. Без них регрессионный анализ не заслуживает доверия.

Рис. 26. Графики остатков для четырех наборов данных

Как избежать подводных камней при регрессионном анализе:

  • Анализ возможной взаимосвязи между переменными X и Y всегда начинайте с построения диаграммы разброса.
  • Прежде чем интерпретировать результаты регрессионного анализа, проверяйте условия его применимости.
  • Постройте график зависимости остатков от независимой переменной. Это позволит определить, насколько эмпирическая модель соответствует результатам наблюдения, и обнаружить нарушение постоянства дисперсии.
  • Для проверки предположения о нормальном распределении ошибок используйте гистограммы, диаграммы «ствол и листья», блочные диаграммы и графики нормального распределения.
  • Если условия применимости метода наименьших квадратов не выполняются, используйте альтернативные методы (например, модели квадратичной или множественной регрессии).
  • Если условия применимости метода наименьших квадратов выполняются, необходимо проверить гипотезу о статистической значимости коэффициентов регрессии и построить доверительные интервалы, содержащие математическое ожидание и предсказанное значение отклика.
  • Избегайте предсказывать значения зависимой переменной за пределами диапазона изменения независимой переменной.
  • Имейте в виду, что статистические зависимости не всегда являются причинно-следственными. Помните, что корреляция между переменными не означает наличия причинно-следственной зависимости между ними.

Резюме. Как показано на структурной схеме (рис. 27), в заметке описаны модель простой линейной регрессии, условия ее применимости и способы проверки этих условий. Рассмотрен t -критерий для проверки статистической значимости наклона регрессии. Для предсказания значений зависимой переменной использована регрессионная модель. Рассмотрен пример, связанный с выбором места для торговой точки, в котором исследуется зависимость годового объема продаж от площади магазина. Полученная информация позволяет точнее выбрать место для магазина и предсказать его годовой объем продаж. В следующих заметках будет продолжено обсуждение регрессионного анализа, а также рассмотрены модели множественной регрессии.

Рис. 27. Структурная схема заметки

Используются материалы книги Левин и др. Статистика для менеджеров. – М.: Вильямс, 2004. – с. 792–872

Если зависимая переменная является категорийной, необходимо применять логистическую регрессию.

Метод регрессивного анализа применяется для определения технико-экономических параметров продукции, относящейся к конкретному параметрическому ряду, с целью построения и выравнивания ценностных соотношений. Этот метод используется для анализа и обоснования уровня и соотношений цен продукции, характеризующейся наличием одного или нескольких технико-экономических параметров, отражающих основные потребительские свойства. Регрессивный анализ позволяет найти эмпирическую формулу, описывающую зависимость цены от технико-экономических параметров изделий:

P=f(X1X2,...,Xn),

где Р - значение цены единицы изделия, руб.; (Х1, Х2, ... Хп) - технико-экономические параметры изделий.

Метод регрессивного анализа - наиболее совершенный из используемых нормативно-параметрических методов - эффективен при проведении расчетов на основе применения современных информационных технологий и систем. Применение его включает следующие основные этапы:

  • определение классификационных параметрических групп изделий;
  • отбор параметров, в наибольшей степени влияющих на цену изделия;
  • выбор и обоснование формы связи изменения цены при изменении параметров;
  • построение системы нормальных уравнений и расчет коэффициентов регрессии.

Основной квалификационной группой изделий, цена которых подлежит выравниванию, является параметрический ряд, внутри которого изделия могут группироваться по различному исполнению в зависимости от их применения, условий и требований эксплуатации и т. д. При формировании параметрических рядов могут быть применены методы автоматической классификации, которые позволяют из общей массы продукции выделять ее однородные группы. Отбор технико-экономических параметров производится исходя из следующих основных требований:

  • в состав отобранных параметров включаются параметры, зафиксированные в стандартах и технических условиях; помимо технических параметров (мощности, грузоподъемности, скорости и т.д.) используются показатели серийности продукции, коэффициенты сложности, унификации и др.;
  • совокупность отобранных параметров должна достаточно полно характеризовать конструктивные, технологические и эксплуатационные свойства изделий, входящих в ряд, и иметь достаточно тесную корреляционную связь с ценой;
  • параметры не должны быть взаимозависимы.

Для отбора технико-экономических параметров, существенно влияющих на цену, вычисляется матрица коэффициентов парной корреляции. По величине коэффициентов корреляции между параметрами можно судить о тесноте их связи. При этом близкая к нулю корреляция показывает незначительное влияние параметра на цену. Окончательный отбор технико-экономических параметров производится в процессе пошагового регрессивного анализа с использованием компьютерной техники и соответствующих стандартных программ.

В практике ценообразования применяется следующий набор функций:

линейная

P = ao + alXl + ... + antXn,

линейно-степенная

Р = ао + а1Х1 + ... + аnХп + (ап+1Хп) (ап+1Хп) +... + (ап+nХп2) (ап+nХп2)

обратного логарифма

Р = а0 + а1: In Х1 + ... + ап: In Xn,

степенная

P = a0 (X1^a1) (X2^a2) .. (Xn^an)

показательная

P = e^(а1+а1X1+...+аnХn)

гиперболическая

Р = ао + а1:Х1 + а2:Х2 + ... + ап:Хп,

где Р - выравнивание цены; X1 X2,..., Хп - значение технико-экономических параметров изделий ряда; a0, a1 ..., аn - вычисляемые коэффициенты уравнения регресии.

В практической работе по ценообразованию в зависимости от формы связи цен и технико-экономических параметров могут использоваться другие уравнения регрессии. Вид функции связи между ценой и совокупностью технико-экономических параметров может быть задан предварительно или выбран автоматически в процессе обработки на ЭВМ. Теснота корреляционной связи между ценой и совокупностью параметров оценивается по величине множественного коэффициента корреляции. Близость его к единице говорит о тесной связи. По уравнению регрессии получают выравненные (расчетные) значения цен изделий данного параметрического ряда. Для оценки результатов выравнивания вычисляют относительные величины отклонения расчетных значений цен от фактических:

Цр = Рф - Рр: Р х 100

где Рф, Рр - фактическая и расчетная цены.

Величина Цр не должна превышать 8-10%. В случае существенных отклонений расчетных значений от фактических необходимо исследовать:

  • правильность формирования параметрического ряда, так как в его составе могут оказаться изделия, по своим параметрам резко отличающиеся от других изделий ряда. Их надо исключить;
  • правильность отбора технико-экономических параметров. Возможна совокупность параметров, слабо коррелируемая с ценой. В этом случае необходимо продолжить поиск и отбор параметров.

Порядок и методика проведения регрессивного анализа, нахождения неизвестных параметров уравнения и экономическая оценка полученных результатов осуществляются в соответствии с требованиями математической статистики.

Регрессионный анализ -- метод моделирования измеряемых данных и исследования их свойств. Данные состоят из пар значений зависимой переменной (переменной отклика) и независимой переменной (объясняющей переменной). Регрессионная модель есть функция независимой переменной и параметров с добавленной случайной переменной.

Корреляционный анализ и регрессионный анализ являются смежными разделами математической статистики, и предназначаются для изучения по выборочным данным статистической зависимости ряда величин; некоторые из которых являются случайными. При статистической зависимости величины не связаны функционально, но как случайные величины заданы совместным распределением вероятностей.

Исследование зависимости случайных величин приводит к моделям регрессии и регрессионному анализу на базе выборочных данных. Теория вероятностей и математическая статистика представляют лишь инструмент для изучения статистической зависимости, но не ставят своей целью установление причинной связи. Представления и гипотезы о причинной связи должны быть привнесены из некоторой другой теории, которая позволяет содержательно объяснить изучаемое явление.

Числовые данные обычно имеют между собой явные (известные) или неявные (скрытые) связи.

Явно связаны показатели, которые получены методами прямого счета, т. е. вычислены по заранее известным формулам. Например, проценты выполнения плана, уровни, удельные веса, отклонения в сумме, отклонения в процентах, темпы роста, темпы прироста, индексы и т. д.

Связи же второго типа (неявные) заранее неизвестны. Однако необходимо уметь объяснять и предсказывать (прогнозировать) сложные явления для того, чтобы управлять ими. Поэтому специалисты с помощью наблюдений стремятся выявить скрытые зависимости и выразить их в виде формул, т. е. математически смоделировать явления или процессы. Одну из таких возможностей предоставляет корреляционно-регрессионный анализ.

Математические модели строятся и используются для трех обобщенных целей:

  • * для объяснения;
  • * для предсказания;
  • * для управления.

Пользуясь методами корреляционно-регрессионного анализа, аналитики измеряют тесноту связей показателей с помощью коэффициента корреляции. При этом обнаруживаются связи, различные по силе (сильные, слабые, умеренные и др.) и различные по направлению (прямые, обратные). Если связи окажутся существенными, то целесообразно будет найти их математическое выражение в виде регрессионной модели и оценить статистическую значимость модели.

Регрессионный анализ называют основным методом современной математической статистики для выявления неявных и завуалированных связей между данными наблюдений.

Постановка задачи регрессионного анализа формулируется следующим образом.

Имеется совокупность результатов наблюдений. В этой совокупности один столбец соответствует показателю, для которого необходимо установить функциональную зависимость с параметрами объекта и среды, представленными остальными столбцами. Требуется: установить количественную взаимосвязь между показателем и факторами. В таком случае задача регрессионного анализа понимается как задача выявления такой функциональной зависимости y = f (x2, x3, …, xт), которая наилучшим образом описывает имеющиеся экспериментальные данные.

Допущения:

количество наблюдений достаточно для проявления статистических закономерностей относительно факторов и их взаимосвязей;

обрабатываемые данные содержат некоторые ошибки (помехи), обусловленные погрешностями измерений, воздействием неучтенных случайных факторов;

матрица результатов наблюдений является единственной информацией об изучаемом объекте, имеющейся в распоряжении перед началом исследования.

Функция f (x2, x3, …, xт), описывающая зависимость показателя от параметров, называется уравнением (функцией) регрессии. Термин "регрессия" (regression (лат.) - отступление, возврат к чему-либо) связан со спецификой одной из конкретных задач, решенных на стадии становления метода.

Решение задачи регрессионного анализа целесообразно разбить на несколько этапов:

предварительная обработка данных;

выбор вида уравнений регрессии;

вычисление коэффициентов уравнения регрессии;

проверка адекватности построенной функции результатам наблюдений.

Предварительная обработка включает стандартизацию матрицы данных, расчет коэффициентов корреляции, проверку их значимости и исключение из рассмотрения незначимых параметров.

Выбор вида уравнения регрессии Задача определения функциональной зависимости, наилучшим образом описывающей данные, связана с преодолением ряда принципиальных трудностей. В общем случае для стандартизованных данных функциональную зависимость показателя от параметров можно представить в виде

y = f (x1, x2, …, xm) + e

где f - заранее не известная функция, подлежащая определению;

e - ошибка аппроксимации данных.

Указанное уравнение принято называть выборочным уравнением регрессии. Это уравнение характеризует зависимость между вариацией показателя и вариациями факторов. А мера корреляции измеряет долю вариации показателя, которая связана с вариацией факторов. Иначе говоря, корреляцию показателя и факторов нельзя трактовать как связь их уровней, а регрессионный анализ не объясняет роли факторов в создании показателя.

Еще одна особенность касается оценки степени влияния каждого фактора на показатель. Регрессионное уравнение не обеспечивает оценку раздельного влияния каждого фактора на показатель, такая оценка возможна лишь в случае, когда все другие факторы не связаны с изучаемым. Если изучаемый фактор связан с другими, влияющими на показатель, то будет получена смешанная характеристика влияния фактора. Эта характеристика содержит как непосредственное влияние фактора, так и опосредованное влияние, оказанное через связь с другими факторами и их влиянием на показатель.

В регрессионное уравнение не рекомендуется включать факторы, слабо связанные с показателем, но тесно связанные с другими факторами. Не включают в уравнение и факторы, функционально связанные друг с другом (для них коэффициент корреляции равен 1). Включение таких факторов приводит к вырождению системы уравнений для оценок коэффициентов регрессии и к неопределенности решения.

Функция f должна подбираться так, чтобы ошибка e в некотором смысле была минимальна. В целях выбора функциональной связи заранее выдвигают гипотезу о том, к какому классу может принадлежать функция f, а затем подбирают "лучшую" функцию в этом классе. Выбранный класс функций должен обладать некоторой "гладкостью", т.е. "небольшие" изменения значений аргументов должны вызывать "небольшие" изменения значений функции.

Частным случаем, широко применяемым на практике, является полином первой степени или уравнение линейной регрессии

Для выбора вида функциональной зависимости можно рекомендовать следующий подход:

в пространстве параметров графически отображают точки со значениями показателя. При большом количестве параметров можно строить точки применительно к каждому из них, получая двумерные распределения значений;

по расположению точек и на основе анализа сущности взаимосвязи показателя и параметров объекта делают заключение о примерном виде регрессии или ее возможных вариантах;

после расчета параметров оценивают качество аппроксимации, т.е. оценивают степень близости расчетных и фактических значений;

если расчетные и фактические значения близки во всей области задания, то задачу регрессионного анализа можно считать решенной. В противном случае можно попытаться выбрать другой вид полинома или другую аналитическую функцию, например периодическую.

Вычисление коэффициентов уравнения регрессии

Систему уравнений на основе имеющихся данных однозначно решить невозможно, так как количество неизвестных всегда больше количества уравнений. Для преодоления этой проблемы нужны дополнительные допущения. Здравый смысл подсказывает: желательно выбрать коэффициенты полинома так, чтобы обеспечить минимум ошибки аппроксимации данных. Могут применяться различные меры для оценки ошибок аппроксимации. В качестве такой меры нашла широкое применение среднеквадратическая ошибка. На ее основе разработан специальный метод оценки коэффициентов уравнений регрессии - метод наименьших квадратов (МНК). Этот метод позволяет получить оценки максимального правдоподобия неизвестных коэффициентов уравнения регрессии при нормальном распределения вариант, но его можно применять и при любом другом распределении факторов.

В основе МНК лежат следующие положения:

значения величин ошибок и факторов независимы, а значит, и некоррелированы, т.е. предполагается, что механизмы порождения помехи не связаны с механизмом формирования значений факторов;

математическое ожидание ошибки e должно быть равно нулю (постоянная составляющая входит в коэффициент a0), иначе говоря, ошибка является центрированной величиной;

выборочная оценка дисперсии ошибки должна быть минимальна.

Если же линейная модель неточна или параметры измеряются неточно, то и в этом случае МНК позволяет найти такие значения коэффициентов, при которых линейная модель наилучшим образом описывает реальный объект в смысле выбранного критерия среднеквадратического отклонения.

Качество полученного уравнения регрессии оценивают по степени близости между результатами наблюдений за показателем и предсказанными по уравнению регрессии значениями в заданных точках пространства параметров. Если результаты близки, то задачу регрессионного анализа можно считать решенной. В противном случае следует изменить уравнение регрессии и повторить расчеты по оценке параметров.

При наличии нескольких показателей задача регрессионного анализа решается независимо для каждого из них.

Анализируя сущность уравнения регрессии, следует отметить следующие положения. Рассмотренный подход не обеспечивает раздельной (независимой) оценки коэффициентов - изменение значения одного коэффициента влечет изменение значений других. Полученные коэффициенты не следует рассматривать как вклад соответствующего параметра в значение показателя. Уравнение регрессии является всего лишь хорошим аналитическим описанием имеющихся данных, а не законом, описывающим взаимосвязи параметров и показателя. Это уравнение применяют для расчета значений показателя в заданном диапазоне изменения параметров. Оно ограниченно пригодно для расчета вне этого диапазона, т.е. его можно применять для решения задач интерполяции и в ограниченной степени для экстраполяции.

Главной причиной неточности прогноза является не столько неопределенность экстраполяции линии регрессии, сколько значительная вариация показателя за счет неучтенных в модели факторов. Ограничением возможности прогнозирования служит условие стабильности неучтенных в модели параметров и характера влияния учтенных факторов модели. Если резко меняется внешняя среда, то составленное уравнение регрессии потеряет свой смысл.

Прогноз, полученный подстановкой в уравнение регрессии ожидаемого значения параметра, является точечным. Вероятность реализации такого прогноза ничтожна мала. Целесообразно определить доверительный интервал прогноза. Для индивидуальных значений показателя интервал должен учитывать ошибки в положении линии регрессии и отклонения индивидуальных значений от этой линии .

После того как с помощью корреляционного анализа выявлено наличие статистических связей между переменными и оценена степень их тесноты, обычно переходят к математическому описанию конкретного вида зависимостей с использованием регрессионного анализа. С этой целью подбирают класс функций, связывающий результативный показатель у и аргументы х 1, х 2,…, х к отбирают наиболее информативные аргументы, вычисляют оценки неизвестных значений параметров уравнения связи и анализируют свойства полученного уравнения.

Функция f(х 1, х 2,…, х к) описывающая зависимость среднего значения результативного признака у от заданных значений аргументов, называется функцией (уравнением) регрессии. Термин «регрессия» (лат. -regression- отступление, возврат к чему-либо) введен английским психологом и антропологом Ф.Гальтоном и связан исключительно со спецификой одного из первых конкретных примеров, в котором это понятие было использовано. Так, обрабатывая статистические данные в связи с анализом наследственности роста, Ф. Гальтон нашел, что если отцы отклоняются от среднего роста всех отцов на x дюймов, то их сыновья отклоняются от среднего роста всех сыновей меньше, чем на x дюймов. Выявленная тенденция была названа «регрессией к среднему состоянию». С тех пор термин «регрессия» широко используется в статистической литературе, хотя во многих случаях он недостаточно точно характеризует понятие статистической зависимости.

Для точного описания уравнения регрессии необходимо знать закон распределения результативного показателя у. В статистической практике обычно приходится ограничиваться поиском подходящих аппроксимаций для неизвестной истинной функции регрессии, так как исследователь не располагает точным знанем условного закона распределения вероятностей анализируемого результатирующего показателя у при заданных значениях аргумента х.

Рассмотрим взаимоотношение между истинной f(х) = М(у1х), мо дельной регрессией? и оценкой y регрессии. Пусть результативный показатель у связан с аргументом х соотношением:

где - е случайная величина, имеющая нормальный закон распределения, причем Ме = 0 и D е = у 2 . Истинная функция регрессии в этом случае имеет вид: f (х) = М(у/х) = 2х 1.5 .

Предположим, что точный вид истинного уравнения регрессии нам не известен, но мы располагаем девятью наблюдениями над двумерной случайной величиной, связанной соотношением уi= 2х1,5+е, и представленной на рис. 1

Рисунок 1 - Взаимное расположение истиной f (х) и теоретической? модели регрессии

Расположение точек на рис. 1 позволяет ограничиться классом линейных зависимостей вида? = в 0 +в 1 x. С помощью метода наименьших квадратов найдем оценку уравнения регрессии у = b 0 +b 1 x. Для сравнения на рис. 1 приводятся графики истинной функции регрессии у=2х 1,5 , теоретической аппроксимирующей функции регрессии? = в 0 +в 1 x .

Поскольку мы ошиблись в выборе класса функции регрессии, а это достаточно часто встречается в практике статистических исследований, то наши статистические выводы и оценки окажутся ошибочными. И как бы мы ни увеличивали объем наблюдений, наша выборочная оценка у не будет близка к истинной функции регрессии f (х). Если бы мы правильно выбрали класс функций регрессии, то неточность в описании f(х) с помощью? объяснялась бы только ограниченностью выборки.

С целью наилучшего восстановления по исходным статистическим данным условного значения результативного показателя у(х) и неизвестной функции регрессии f(х) = М(у/х) наиболее часто используют следующие критерии адекватности (функции потерь).

Метод наименьших квадратов. Согласно ему минимизируется квадрат отклонения наблюдаемых значений результативного показателя у, (i = 1,2,..., п) от модельных значений,? = f(х i), где, х i - значение вектора аргументов в i-м наблюдении: ?(y i - f(х i) 2 > min. Получаемая регрессия называется среднеквадратической.

Метод наименьших модулей. Согласно ему минимизируется сумма абсолютных отклонений наблюдаемых значений результативного показателя от модульных значений. И получаем,? = f(х i), среднеабсолютную медианную регрессию? |y i - f(х i)| >min.

Регрессионным анализом называется метод статистического анализа зависимости случайной величины у от переменных х j = (j=1,2,..., к), рассматриваемых в регрессионном анализе как неслучайные величины, независимо от истинного закона распределения х j.

Обычно предполагается, что случайная величина у имеет нормальный закон распределения с условным математическим ожиданием у, являющимся функцией от аргументов х/ (/= 1, 2,..., к) и постоянной, не зависящей от аргументов, дисперсией у 2 .

В общем линейная модель регрессионного анализа имеет вид:

Y = Уk j=0 вj цj (x1 , x2 . . .. ,xk )+Э

где ц j - некоторая функция его переменных - x 1 , x 2 . . .. ,x k , Э - случайная величина с нулевым математическим ожиданием и дисперсией у 2 .

В регрессионном анализе вид уравнения регрессии выбирают исходя из физической сущности изучаемого явления и результатов наблюдения.

Оценки неизвестных параметров уравнения регрессии находят обычно методом наименьших квадратов. Ниже остановимся более подробно на этой проблеме.

Двумерное линейное уравнение регрессии. Пусть на основании анализа исследуемого явления предполагается, что в «среднем» у есть линейная функция от х, т. е. имеется уравнение регрессии

у=М(у/х)=в 0 + в 1 х)

где М(у1х) - условное математическое ожидание случайной величины у при заданном х; в 0 и в 1 - неизвестные параметры генеральной совокупности, которые надлежит оценить по результатам выборочных наблюдений.

Предположим, что для оценки параметров в 0 и в 1 из двухмерной генеральной совокупности (х, у) взята выборка объемом n, где (х, у,) результат i-го наблюдения (i = 1, 2,..., n). В этом случае модель регрессионного анализа имеет вид:

y j = в 0 + в 1 x+е j .

где е j .- независимые нормально распределенные случайные величины с нулевым математическим ожиданием и дисперсией у 2 , т. е. М е j . = 0;

D е j .= у 2 для всех i = 1, 2,..., n.

Согласно методу наименьших квадратов в качестве оценок неизвестных параметров в 0 и в 1 следует брать такие значения выборочных характеристик b 0 и b 1 , которые минимизируют сумму квадратов отклонений значений результативного признака у i от условного математического ожидания? i

Методику определения влияния характеристик маркетинга на прибыль предприятия рассмотрим на примере семнадцати типичных предприятий, имеющих средние размеры и показатели хозяйственной деятельности.

При решении задачи учитывались следующие характеристики, выявленные в результате анкетного опроса как наиболее значимые (важные):

* инновационная деятельность предприятия;

* планирование ассортимента производимой продукции;

* формирование ценовой политики;

* взаимоотношения с общественностью;

* система сбыта;

* система стимулирования работников.

На основе системы сравнений по факторам были построены квадратные матрицы смежности, в которых вычислялись значения относительных приоритетов по каждому фактору: инновационная деятельность предприятия, планирование ассортимента производимой продукции, формирование ценовой политики, реклама, взаимоотношения с общественностью, система сбыта, система стимулирования работников.

Оценки приоритетов по фактору «взаимоотношения с общественностью» получены в результате анкетирования специалистов предприятия. Приняты следующие обозначения: > (лучше), > (лучше или одинаково), = (одинаково), < (хуже или одинаково), <

Далее решалась задача комплексной оценки уровня маркетинга предприятия. При расчете показателя была определена значимость (вес) рассмотренных частных признаков и решалась задача линейного свертывания частных показателей. Обработка данных производилась по специально разработанным программам.

Далее рассчитывается комплексная оценка уровня маркетинга предприятия -- коэффициент маркетинга, который вносится в таблице 1. Кроме того, в названую таблицу включены показатели, характеризующие предприятие в целом. Данные в таблице будут использованы для проведения регрессионного анализа. Результативным признаком является прибыль. В качестве факторных признаков наряду с коэффициентом маркетинга использованы следующие показатели: объем валовой продукции, стоимость основных фондов, численность работников, коэффициент специализации.

Таблица 1 - Исходные данные для регрессионного анализа


По данным таблицы и на основе факторов с наиболее существенными значениями коэффициентов корреляции были построены регрессионные функции зависимости прибыли от факторов.

Уравнение регрессии в нашем случае примет вид:

О количественном влиянии рассмотренных выше факторов на величину прибыли говорят коэффициенты уравнения регрессии. Они показывают, на сколько тысяч рублей изменяется ее величина при изменении факторного признака на одну единицу. Как следует из уравнения, увеличение коэффициента комплекса маркетинга на одну единицу дает прирост прибыли на 1547,7 тыс. руб. Это говорит о том, что в совершенствовании маркетинговой деятельности кроется огромный потенциал улучшения экономических показателей предприятий.

При исследовании эффективности маркетинга наиболее интересным и самым важным факторным признаком является фактор Х5 -- коэффициент маркетинга. В соответствии с теорией статистики достоинство имеющегося уравнения множественной регрессии является возможность оценивать изолированное влияние каждого фактора, в том числе фактора маркетинга.

Результаты проведенного регрессионного анализа имеют и более широкое применение, чем для расчета параметров уравнения. Критерий отнесения (КЭф,) предприятий к относительно лучшим или относительно худшим основан на относительном показателе результата:

где Y фактi - фактическая величина i-го предприятия, тыс. руб.;

Y расчi -величина прибыли i-го предприятия, полученная расчетным путем по уравнению регрессии

В терминах решаемой задачи величина носит название «коэффициент эффективности». Деятельность предприятия можно признать эффективной в тех случаях, когда величина коэффициента больше единицы. Это означает, что фактическая прибыль больше прибыли, усредненной по выборке.

Фактические и расчетные значения прибыли представлены в табл. 2.

Таблица 2 - Анализ результативного признака в регрессионной модели

Анализ таблицы показывает, что в нашем случае деятельность предприятий 3, 5, 7, 9, 12, 14, 15, 17 за рассматриваемый период можно признать успешной.

В своих работах, датированных ещё 1908 годом. Он описал его на примере работы агента, осуществляющего продажу недвижимости. В своих записях специалист по торговле домами вёл учёт широкого спектра исходных данных каждого конкретного строения. По результатам торгов определялось, какой фактор имел наибольшее влияние на цену сделки.

Анализ большого количества сделок дал интересные результаты. На конечную стоимость оказывали влияние множество факторов, иногда приводя к парадоксальным выводам и даже к явным «выбросам», когда дом с высоким изначальным потенциалом продавался по заниженному ценовому показателю.

Вторым примером применения подобного анализа приведена работа которому было доверено определение вознаграждения сотрудникам. Сложность задачи заключалась в том, что требовалась не раздача фиксированной суммы каждому, а строгое соответствие её величины конкретно выполненной работе. Появление множества задач, имеющих практически сходный вариант решения, потребовало более детального их изучения на математическом уровне.

В существенное место было отведено под раздел «регрессионный анализ», в нём объединились практические методы, используемые для исследования зависимостей, подпадающих под понятие регрессионных. Эти взаимосвязи наблюдаются между данными, полученными в ходе статистических исследований.

Среди множества решаемых задач основными ставит перед собой три цели: определение для уравнения регрессии общего вида; построение оценок параметров, являющихся неизвестными, которые входят в состав уравнения регрессии; проверка статистических регрессионных гипотез. В ходе изучения связи, возникающей между парой величин, полученных в результате экспериментальных наблюдений и составляющих ряд (множество) типа (x1, y1), ..., (xn, yn), опираются на положения теории регрессии и предполагают, что для одной величины Y наблюдается определённое вероятностное распределение, при том, что другое X остаётся фиксированным.

Результат Y зависит от значения переменной X, зависимость эта может определяться различными закономерностями, при этом на точность полученных результатов оказывает влияние характер наблюдений и цель анализа. Экспериментальная модель основывается на определённых допущениях, которые являются упрощёнными, но правдоподобными. Основным условием является то, что параметр X является величиной контролируемой. Его значения задаются до начала эксперимента.

Если в ходе эксперимента используется пара неконтролируемых величин XY, то регрессионный анализ осуществляется одним и тем же способом, но для интерпретации результатов, в ходе которой изучается связь исследуемых случайных величин, применяются методы Методы математической статистики не являются отвлеченной темой. Они находят себе применение в жизни в самых различных сферах деятельности человека.

В научной литературе для определения выше указанного метода нашёл широкое использование термин линейный регрессионный анализ. Для переменной X применяют термин регрессор или предиктор, а зависимые Y-переменные ещё называют критериальными. В данной терминологии отражается лишь математическая зависимость переменных, но никак не следственно-причинные отношения.

Регрессионный анализ служит наиболее распространённым методом, который используется в ходе обработки результатов самых различных наблюдений. Физические и биологические зависимости изучаются по средствам данного метода, он реализован и в экономике, и в технике. Масса других областей используют модели регрессионного анализа. Дисперсионный анализ, статистический анализ многомерный тесно сотрудничают с данным способом изучения.

Загрузка...