musings.ru

Независимые испытания и формула бернулли. Простые задачи по теории вероятности

Поэтому ваше ближайшее времяпровождение будет крайне полезным. Кроме того, я расскажу, в чём заблуждается подавляющее большинство участников лотерей и азартных игр. …Нееет, вера или слабая надежда «сорвать куш» тут совершенно не при чём;-) Не успев и глазом моргнуть, погружаемся в тему:

Что такое независимые испытания ? Практически всё понятно уже из самого названия. Пусть производится несколько испытаний. Если вероятность появления некоего события в каждом из них не зависит от исходов остальных испытаний, то… заканчиваем фразу хором =) Молодцы. При этом под словосочетанием «независимые испытания» часто подразумевают повторные независимые испытания – когда они осуществляются друг за другом.

Простейшие примеры:
– монета подбрасывается 10 раз;
– игральная кость подбрасывается 20 раз.

Совершенно ясно, что вероятность выпадения орла либо решки в любом испытании не зависит от результатов других бросков. Аналогичное утверждение, естественно, справедливо и для кубика.

А вот последовательное извлечение карт из колоды не является серией независимых испытаний – как вы помните, это цепочка зависимых событий . Однако если карту каждый раз возвращать обратно, то ситуация станет «такой, какой надо».

Спешу обрадовать – у нас в гостях очередной Терминатор, который абсолютно равнодушен к своим удачам/неудачам, и поэтому его стрельба представляет собой образец стабильности =):

Задача 1

Стрелок совершает 4 выстрела по мишени. Вероятность попадания при каждом выстреле постоянна и равна . Найти вероятность того, что:

а) стрелок попадёт только один раз;
б) стрелок попадёт 2 раза.

Решение : условие сформулировано в общем виде и вероятность попадания в мишень при каждом выстреле считается известной . Она равна (если совсем тяжко, присвойте параметру какое-нибудь конкретное значение, например, ) .

Коль скоро, мы знаем , то легко найти вероятность промаха в каждом выстреле:
, то есть, «ку» – это тоже известная нам величина .

а) Рассмотрим событие «Стрелок попадёт только один раз» и обозначим его вероятность через (индексы понимаются как «одно попадание из четырёх») . Данное событие состоит в 4 несовместных исходах: стрелок попадёт в 1-й или во 2-й или в 3-й или в 4-й попытке.

Найти вероятность того, что при броске 10 монет орёл выпадет на 3 монетах.

Здесь испытания не повторяются, а скорее, производятся одновременно, но, тем не менее, работает та же самая формула: .

Решение будет отличаться смыслом и некоторыми комментариями, в частности:
способами можно выбрать 3 монеты, на которых выпадет орёл.
– вероятность выпадения орла на каждой из 10 монет
и т.д.

Однако на практике подобные задачи встречаются не столь часто, и, видимо, по этой причине формула Бернулли чуть ли не стереотипно ассоциируется только с повторными испытаниями. Хотя, как только что было показано, повторяемость вовсе не обязательна.

Следующая задача для самостоятельного решения:

Задача 3

Игральную кость бросают 6 раз. Найти вероятность того, что 5 очков:

а) не выпадут (выпадут 0 раз) ;
б) выпадут 2 раза;
в) выпадут 5 раз.

Результаты округлить до 4 знаков после запятой.

Краткое решение и ответ в конце урока.

Очевидно, что в рассматриваемых примерах некоторые события более вероятны, а некоторые – менее вероятны. Так, например, при 6 бросках кубика даже безо всяких расчётов интуитивно понятно, что вероятности событий пунктов «а» и «бэ» значительно больше вероятности того, что «пятёрка» выпадет 5 раз. А теперь поставим задачу найти

НАИВЕРОЯТНЕЙШЕЕ число появлений события в независимых испытаниях

Опять же на уровне интуиции в Задаче №3 можно сделать вывод о том, что наивероятнейшее количество появлений «пятёрки» равно единице – ведь всего граней шесть, и при 6 бросках кубика каждая из них должна выпасть в среднем по одному разу. Желающие могут вычислить вероятность и посмотреть, будет ли она больше «конкурирующих» значений и .

Сформулируем строгий критерий : для отыскания наивероятнейшего числа появлений случайного события в независимых испытаниях (с вероятностью в каждом испытании) руководствуются следующим двойным неравенством:

, причём:

1) если значение – дробное, то существует единственное наивероятнейшее число ;
в частности, если – целое, то оно и есть наивероятнейшее число: ;

2) если же – целое, то существуют два наивероятнейших числа: и .

Наивероятнейшее число появлений «пятёрки» при 6 бросках кубика подпадает под частный случай первого пункта:

В целях закрепления материала решим пару задач:

Задача 4

Вероятность того, что при броске мяча баскетболист попадёт в корзину, равна 0,3. Найти наивероятнейшее число попаданий при 8 бросках и соответствующую вероятность.

А это уже если и не Терминатор, то, как минимум, хладнокровный спортсмен =)

Решение : для оценки наивероятнейшего числа попаданий используем двойное неравенство . В данном случае:

– всего бросков;
– вероятность попадания в корзину при каждом броске;
– вероятность промаха при каждом броске.

Таким образом, наивероятнейшее количество попаданий при 8 бросках находится в следующих пределах:

Поскольку левая граница – дробное число (пункт №1) , то существует единственное наивероятнейшее значение, и, очевидно, что оно равно .

Используя формулу Бернулли , вычислим вероятность того, что при 8 бросках будет ровно 2 попадания:

Ответ : – наивероятнейшее количество попаданий при 8 бросках,
– соответствующая вероятность.

Аналогичное задание для самостоятельного решения:

Задача 5

Монета подбрасывается 9 раз. Найти вероятность наивероятнейшего числа появлений орла

Примерный образец решения и ответ в конце урока.

После увлекательного отступления рассмотрим ещё несколько задач, а затем я поделюсь секретом правильной игры в азартные игры и лотереи.

Задача 6

Среди изделий, произведенных на станке-автомате, в среднем бывает 60% изделий первого сорта. Какова вероятность того, что среди 6 наудачу отобранных изделий будет:

а) от 2 до 4 изделий первого сорта;
б) не менее 5 изделий первого сорта;
в) хотя бы одно изделие более низкого сорта.

Вероятность производства первосортного изделия не зависит от качества других выпущенных изделий, поэтому здесь идёт речь о независимых испытаниях. Старайтесь не пренебрегать анализом условия, а то может статься – события-то зависимые или задача вообще о другом.

Решение : вероятность зашифрована под проценты, которые, напоминаю, нужно разделить на сто: – вероятность того, что выбранное изделие будет 1-го сорта.
Тогда: – вероятность того, что оно не будет первосортным.

а) Событие «Среди 6 наудачу отобранных изделий будет от 2 до 4 изделий первого сорта» состоит в трёх несовместных исходах:

среди изделий будет 2 первосортных или 3 первосортных или 4 первосортных.

С исходами удобнее разделаться по отдельности. Трижды используем формулу Бернулли :

– вероятность того, что в течение дня безотказно будут работать, как минимум, 5 компьютеров из шести.

Данное значение нас тоже не устроит, так как оно меньше требуемой надёжности работы вычислительного центра:

Таким образом, шести компьютеров тоже не достаточно. Добавляем ещё один:

3) Пусть в вычислительном центре компьютеров. Тогда безотказно должны работать 5, 6 или 7 компьютеров. Используя формулу Бернулли и теорему сложения вероятностей несовместных событий , найдём вероятность того, что в течение дня безотказно будут работать, как минимум, 5 компьютеров из семи.

Бросание монет. Решение задач на нахождение вероятности

На этой странице я расскажу об одном популярном классе задач, которые встречаются в любых учебниках и методичках по теории вероятностей - задачах про бросание монет (кстати, они встречаются в части В6 ЕГЭ). Формулировки могут быть разные, например "Симметричную монету бросают дважды..." или "Бросают 3 монеты...", но принцип решения от этого не меняется, вот увидите.

найти вероятность, что при бросании монеты
Кстати, сразу упомяну, что в контексте подобных задач не существенно, написать "бросают 3 монеты" или "бросают монету 3 раза", результат (в смысле вычисления вероятности) будет один и тот же (так как результаты бросков независимы друг от друга).

Для задач о подбрасывании монеты существуют два основных метода решения, один - по формуле классической вероятности (фактически переборный метод, доступный даже школьникам), а также его более сложный вариант с использованием комбинаторики, второй - по формуле Бернулли (на мой взгляд он даже легче первого, нужно только запомнить формулу). Рекомендую по порядку прочитать про оба метода, и потом выбирать при решении подходящий.

Классическая вероятность (перебор)
Классическая вероятность (комбинаторный подход)
Формула Бернулли
Полезные ссылки
Способ 1. Классическое определение вероятности

Для начала надо вспомнить саму формулу, по которой будем считать. Итак, вероятность находится как P=m/nP=m/n, где nn - число всех равновозможных элементарных исходов нашего случайного эксперимента с подбрасыванием, а mm - число тех исходов, которые благоприятствуют событию (то есть тому, что указано в условии задачи). Но как найти эти загадочные исходы? Проще всего пояснить на примерах.

Итак, монету бросают дважды. Если обозначить буквой Р выпадение решки (цифры), а буквой О - выпадение орла (герба), то все возможные выпадения можно записать так: РР, ОР, РО и ОО (соответствено, выпали две решки, орел потом решка, решка потом орел и два орла). Подсчитываем число этих комбинаций и получаем n=4n=4. Теперь из них надо отобрать только те, что удовлетворяют условию "орел выпадет ровно один раз", это комбинации ОР и РО и их ровно m=2m=2. Тогда искомая вероятность равна P=2/4=1/2=0.5P=2/4=1/2=0.5. Готово!

Пример 2. Дважды бросают симметричную монету. Найти вероятность того, что оба раза выпала одна сторона.

Так как монета снова подбрасывается два раза, множество всех элементарных исходов эксперимента (или комбинаций, как мы их называем здесь для удобства), точно такое же: РР, ОР, РО и ОО, n=4n=4. А вот условию "оба раза выпала одна сторона" удовлетворяют другие комбинации: РР и ОО, откуда m=2m=2. Нужная вероятность равна P=2/4=1/2=0.5P=2/4=1/2=0.5.

Как видим, все довольно просто. Перейдем к чуть более сложной задаче.

Пример 3. В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орел выпадет ровно два раза.

Снова применим формулу классической вероятности. Шаг первый - выписываем все возможные комбинации уже для 3 бросков! Это будут: ООО, ООР, ОРО, ОРР, РОО, РОР, РРО, РРР. Смотри-ка, бросков всего на один больше, а комбинаций возможных уже n=8n=8 (кстати, они находятся по формуле n=2kn=2k, где kk - число бросков монеты).

Теперь из этого списка надо оставить только те комбинации, где О встречается 2 раза, то есть: ООР, ОРО, РОО, их будет m=3m=3. Тогда вероятность события P=m/n=3/8=0.375P=m/n=3/8=0.375.

Взяли разгон и переходим к 4 монетам.

Приступаем к вычислению. Шаг первый - выписываем все возможные комбинации для 4 бросков монеты. Чтобы проверить себя, сразу подсчитаем, что их должно получиться n=24=16n=24=16 штук! Вот они:
OOOO, OOOP, OOPO, OOPP, OPOO, OPOP, OPPO, OPPP,
POOO, POOP, POPO, POPP, PPOO, PPOP, PPPO, PPPP.

Теперь выбираем те, где герб (он же орел, он же буква О) встречается 2 или 3 раза: OOOP, OOPO, OOPP, OPOO, OPOP, OPPO, POOO, POOP, POPO, PPOO,
их будет m=10m=10. Тогда вероятность равна P=m/n=10/16=5/8=0.625P=m/n=10/16=5/8=0.625.

Думаю, к этому времени вы уже поняли суть метода и сможете сами решить задачи, где бросаются 2-3-4 монеты и орел не выпадает ни разу, или решка ровно один раз и т.п.

Способ 2. Комбинаторный подход + классическая вероятность

Надо заметить, что если действовать исключительно переборным методом (как это делалось выше), с ростом числа монет быстро растет число комбинаций (для 5 монет - 32, для 6 монет - 64 и так далее), так что и вероятность ошибиться при выписывании исходов велика, метод решения теряет свою простоту и привлекательность.

Один из способов решения этой проблемы - остаться в рамках формулы классической вероятности, но использовать комбинаторные методы (см. формулы комбинаторики тут) для подсчета числа исходов. Поясню на примере последней задачи, решив ее другим способом.

Пример 4. Монету бросают 4 раза. Найти вероятность того, что герб выпадет от 2 до 3 раз.

Найдем количество всех равновозможных элементарных исходов эксперимента, заключающегося в бросании 4 монет. Все исходы можно закодировать некоторой последовательностью вида X1X2X3X4X1X2X3X4, где Xi=OXi=O (в ii-ый раз выпал орел) или Xi=PXi=P (в ii-ый раз выпала решка). Найдем число всех таких последовательностей. Значение X1X1 (результат первого броска) может быть выбран 2 способами (орел или решка), значение X2X2 (результат второго броска) может быть выбран 2 способами (орел или решка), и так далее. Итого получим всего n=2⋅2⋅2⋅2=16n=2⋅2⋅2⋅2=16 различных исходов. Или, если использовать формулу комбинаторики для числа размещений с повторениями из 2 объектов по 4 позициям, сразу получим n=A24=24=16n=A42=24=16.

Найдем число благоприятствующих исходов с использованием комбинаторики. Сначала найдем число таких последовательностей, где О встречается ровно 2 раза. Выбираем C24C42 способами 2 позиции, где будет стоять О (на остальных тогда ставим решки). Аналогично для последовательностей, где О встречается ровно 3 раза - C34C43 способами выбираем 3 позиции, где будет стоять О (на оставшейся позиции записывается решка). Подсчитывая число сочетаний и складывая, найдем количество благоприятствующих комбинаций:
m=C24+C34=4!2!2!+4!3!1!=3⋅41⋅2+4=6+4=10.
m=C42+C43=4!2!2!+4!3!1!=3⋅41⋅2+4=6+4=10.
Итого получаем такое же значение вероятности: P=m/n=10/16=0.625P=m/n=10/16=0.625.

Конечно, этот подход кажется сложнее из-за более формального математического описания решения, но гораздо легче масштабируется.

Например, если рассмотреть подобную задачу:

Пример 5. Монету бросают 8 раз. Найти вероятность того, что герб выпадет ровно 4 раза

Ответ можно получить без выписывания 256 комбинаций (!!!), просто по аналогии с примером выше:
n=28=256;m=C48=8!4!4!=5⋅6⋅7⋅81⋅2⋅3⋅4=70;P=nn=70256=0.273.
n=28=256;m=C84=8!4!4!=5⋅6⋅7⋅81⋅2⋅3⋅4=70;P=nn=70256=0.273.
Ради полноты изложения приведу еще пример задачи, решаемой подобным образом (но если хотите, можете сразу переходить к более простому способу 3).

Пример 6. Монету подбрасывают 6 раз. Найти вероятность того, что гербы выпадут два раза и только подряд, а в остальные разы будут только решки.

Найдем количество всех равновозможных элементарных исходов эксперимента, заключающегося в бросании 6 монет. Так как каждый бросок дает 2 возможных исхода (О или Р), всего получим n=26=64n=26=64 элементарных исхода (комбинации вида ОРОРОР, ОООРРР и т.д.).

Найдем число благоприятствующих исходов. Мысленно объединим два герба, которые должны появиться рядом, в один объект (ОО). Остается выбрать ему место среди остальных 4 решек (так гербов должно выпасть 2, то решек - 6-2=4). Существует m=C15=5m=C51=5 способов выбрать позицию в последовательности из 5 объектов. Для наглядности, если выбрана позиция 2, то есть оба герба стоят на втором месте, это комбинация Р(ОО)РРР, если выбрана позиция 4 - РРР(ОО)Р.
Искомая вероятность: P=m/n=5/64=0.078P=m/n=5/64=0.078.

Способ 3. Формула Бернулли

Рассмотрим общую задачу о подбрасывании монет.
Пусть бросается nn монет (или, что тоже самое, монета бросается nn раз). Нужно вычислить вероятность того, что герб появится в точности kk раз.

Так как броски монет - события независимые (результат броска одной монеты не влияет на последующие броски), вероятность выпадения герба в каждом броске одинакова (и равна p=1/2=0.5p=1/2=0.5), то можно для вычисления вероятности применить формулу Бернулли:
P=Pn(k)=Ckn⋅pk⋅(1−p)n−k=Ckn⋅(1/2)k⋅(1−1/2)n−k=Ckn⋅(1/2)n.
P=Pn(k)=Cnk⋅pk⋅(1−p)n−k=Cnk⋅(1/2)k⋅(1−1/2)n−k=Cnk⋅(1/2)n.
То есть, мы вывели общую формулу, дающую ответ на вопрос "какова вероятность того, что герб появится в точности kk раз из nn" (запишем в трех эквивалентных видах, выбирайте удобный для себя):
P=Ckn⋅(1/2)n=Ckn2n=Ckn⋅0.5n,Ckn=n!k!(n−k)!.
P=Cnk⋅(1/2)n=Cnk2n=Cnk⋅0.5n,Cnk=n!k!(n−k)!.
А теперь все задачи решаются проще простого, вот глядите!

Пример 1. В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орел выпадет ровно один раз.

Подставляем n=2,k=1n=2,k=1 и получаем P=C12⋅(1/2)2=2⋅14=12=0.5.P=C21⋅(1/2)2=2⋅14=12=0.5.

Пример 4. Монету бросают 4 раза. Найти вероятность того, что герб выпадет от 2 до 3 раз.

Это уже третий способ решения задачи!
Подставляем n=4,k=2n=4,k=2 и k=3k=3, получаем
P=C24⋅(1/2)4+C34⋅(1/2)4=(6+4)⋅116=1016=0.625.
P=C42⋅(1/2)4+C43⋅(1/2)4=(6+4)⋅116=1016=0.625.
Пример 7. В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орел не выпадет ни разу.

Подставляем n=3,k=0n=3,k=0 и получаем P=C03⋅(1/2)3=1⋅18=18=0.125.P=C30⋅(1/2)3=1⋅18=18=0.125.

Пример 8. Пусть бросают 8 монет. Найти вероятность того, что орел не менее 7 раз.

Подставляем n=8,k=7n=8,k=7 и k=8k=8 и получаем
P=C88⋅(1/2)8+C78⋅(1/2)8=(1+8)⋅1256=9256=0.035.
P=C88⋅(1/2)8+C87⋅(1/2)8=(1+8)⋅1256=9256=0.035.
Таким образом, используя одну простейшую формулу, можно решать множество задач, причем неважно, 3 монеты бросается, или 30, сложность расчетов примерно одинакова. Но, если число бросков становится очень большим, удобнее использовать приближенные формулы Муавра-Лапласа, о которых можно узнать здесь.

Приведенные к настоящему моменту в открытом банке задач ЕГЭ по математике (mathege.ru), решение которых основано на одной лишь формуле, представляющей собой классическое определение вероятности.

Понять формулу проще всего на примерах.
Пример 1. В корзине 9 красных шаров и 3 синих. Шары различаются только цветом. Наугад (не глядя) достаём один из них. Какова вероятность того, что выбранный таким образом шар окажется синего цвета?

Комментарий. В задачах по теории вероятности происходит нечто (в данном случае наше действие по вытаскиванию шара), что может иметь разный результат - исход. Нужно заметить, что на результат можно смотреть по-разному. "Мы вытащили какой-то шар" - тоже результат. "Мы вытащили синий шар" - результат. "Мы вытащили именно вот этот шар из всех возможных шаров" - такой наименее обобщенный взгляд на результат называется элементарным исходом. Именно элементарные исходы имеются в виду в формуле для вычисления вероятности.

Решение. Теперь вычислим вероятность выбора синего шара.
Событие А: "выбранный шар оказался синего цвета"
Общее число всех возможных исходов: 9+3=12 (количество всех шаров, которые мы могли бы вытащить)
Число благоприятных для события А исходов: 3 (количество таких исходов, при которых событие А произошло, - то есть, количество синих шаров)
P(A)=3/12=1/4=0,25
Ответ: 0,25

Посчитаем для той же задачи вероятность выбора красного шара.
Общее число возможных исходов останется тем же, 12. Число благоприятных исходов: 9. Искомая вероятность: 9/12=3/4=0,75

Вероятность любого события всегда лежит в пределах от 0 до 1.
Иногда в повседневной речи (но не в теории вероятности!) вероятность событий оценивают в процентах. Переход между математической и разговорной оценкой осуществляется путем умножения (или деления) на 100%.
Итак,
При этом вероятность равна нулю у событий, которые не могут произойти - невероятны. Например, в нашем примере это была бы вероятность вытащить из корзины зеленый шар. (Число благоприятных исходов равно 0, Р(А)=0/12=0, если считать по формуле)
Вероятность 1 имеют события, которые абсолютно точно произойдут, без вариантов. Например, вероятность того, что «выбранный шар окажется или красным или синим» - для нашей задачи. (Число благоприятных исходов: 12, Р(А)=12/12=1)

Мы рассмотрели классический пример, иллюстрирующий определение вероятности. Все подобные задачи ЕГЭ по теории вероятности решаются применением данной формулы.
На месте красных и синих шаров могут быть яблоки и груши, мальчики и девочки, выученные и невыученные билеты, билеты, содержащие и не содержащие вопрос по какой-то теме (прототипы , ), бракованные и качественные сумки или садовые насосы (прототипы , ) – принцип остается тем же.

Немного отличаются формулировкой задачи теории вероятности ЕГЭ, где нужно вычислить вероятность выпадения какого-то события на определенный день. ( , ) Как и в предыдущих задачах нужно определить, что является элементарным исходом, после чего применить ту же формулу.

Пример 2. Конференция длится три дня. В первый и второй день выступают по 15 докладчиков, в третий день – 20. Какова вероятность того, что доклад профессора М. выпадет на третий день, если порядок докладов определяется жеребьевкой?

Что здесь является элементарным исходом? – Присвоение докладу профессора какого-то одного из всех возможных порядковых номеров для выступления. В жеребьевке участвует 15+15+20=50 человек. Таким образом, доклад профессора М. может получить один из 50 номеров. Значит, и элементарных исходов всего 50.
А какие исходы благоприятные? – Те, при которых окажется, что профессор будет выступать в третий день. То есть, последние 20 номеров.
По формуле вероятность P(A)= 20/50=2/5=4/10=0,4
Ответ: 0,4

Жеребьевка здесь представляет собой установление случайного соответствия между людьми и упорядоченными местами. В примере 2 установление соответствия рассматривалось с точки зрения того, какое из мест мог бы занять конкретный человек. Можно к той же ситуации подходить с другой стороны: кто из людей с какой вероятностью мог бы попасть на конкретное место (прототипы , , , ):

Пример 3. В жеребьевке участвуют 5 немцев, 8 французов и 3 эстонца. Какова вероятность того, что первым (/вторым/седьмым/последним – не важно) будет выступать француз.

Количество элементарных исходов – количество всех возможных людей, которые могли бы по жеребьевке попасть на данное место. 5+8+3=16 человек.
Благоприятные исходы – французы. 8 человек.
Искомая вероятность: 8/16=1/2=0,5
Ответ: 0,5

Немного отличается прототип . Остались задачи про монеты () и игральные кости (), несколько более творческие. Решение этих задач можно посмотреть на страницах прототипов.

Приведем несколько примеров на бросание монеты или кубика.

Пример 4. Когда подбрасываем монету, какова вероятность выпадения решки?
Исходов 2 – орел или решка. (считается, что монета никогда не падает на ребро) Благоприятный исход – решка, 1.
Вероятность 1/2=0,5
Ответ: 0,5.

Пример 5. А если подбрасываем монету два раза? Какова вероятность того, что оба раза выпадет орел?
Главное определить, какие элементарные исходы будем рассматривать при подбрасывании двух монет. После подбрасывания двух монет может получиться один из следующих результатов:
1) PP – оба раза выпала решка
2) PO – первый раз решка, второй раз орел
3) OP – первый раз орел, второй раз решка
4) OO – оба раза выпал орел
Других вариантов нет. Значит, элементарных исходов 4. Благоприятный из них только первый, 1.
Вероятность: 1/4=0,25
Ответ: 0,25

Какова вероятность того, что из двух подбрасываний монеты один раз выпадет решка?
Количество элементарных исходов то же, 4. Благоприятные исходы – второй и третий, 2.
Вероятность выпадения одной решки: 2/4=0,5

В таких задачах может пригодиться ещё одна формула.
Если при одном бросании монеты возможных вариантов результата у нас 2, то для двух бросаний результатов будет 2·2=2 2 =4 (как в примере 5), для трех бросаний 2·2·2=2 3 =8, для четырех: 2·2·2·2=2 4 =16, … для N бросаний возможных результатов будет 2·2·...·2=2 N .

Так, можно найти вероятность выпадения 5 решек из 5 бросаний монеты.
Общее число элементарных исходов: 2 5 =32.
Благоприятных исходов: 1. (РРРРР – все 5 раз решка)
Вероятность: 1/32=0,03125

То же верно и для игральной кости. При одном бросании возможных результатов здесь 6. Значит, для двух бросаний: 6·6=36, для трех 6·6·6=216, и т. д.

Пример 6. Бросаем игральную кость. Какова вероятность, что выпадет четное число?

Всего исходов: 6, по числу граней.
Благоприятных: 3 исхода. (2, 4, 6)
Вероятность: 3/6=0,5

Пример 7. Бросаем две игральные кости. Какова вероятность, что в сумме выпадет 10? (округлить до сотых)

Для одного кубика 6 возможных исходов. Значит, для двух, по вышеупомянутому правилу, 6·6=36.
Какие исходы будут благоприятными для того, чтоб в сумме выпало 10?
10 надо разложить на сумму двух чисел от 1 до 6. Это можно сделать двумя способами: 10=6+4 и 10=5+5. Значит, для кубиков возможны варианты:
(6 на первом и 4 на втором)
(4 на первом и 6 на втором)
(5 на первом и 5 на втором)
Итого, 3 варианта. Искомая вероятность: 3/36=1/12=0,08
Ответ: 0,08

Другие типы задач B6 будут рассмотрены в одной из следующих статей «Как решать».

В теории вероятностей существует группа задач, для решения которых достаточно знать классическое определение вероятности и наглядно представлять предлагаемую ситуацию. Такими задачами является большинство задач с подбрасыванием монеты и задачи с бросанием игрального кубика. Напомним классическое определение вероятности.

Вероятность события А (объективная возможность наступления события в числовом выражении) равна отношению числа благоприятствующих этому событию исходов к общему числу всех равновозможных несовместных элементарных исходов: Р(А)=m/n , где:

  • m – число элементарных исходов испытания, благоприятствующих появлению события А;
  • n – общее число всех возможных элементарных исходов испытания.

Число возможных элементарных исходов испытания и число благоприятных исходов в рассматриваемых задачах удобно определять перебором всех возможных вариантов (комбинаций) и непосредственным подсчетом.

Из таблицы видим, что число возможных элементарных исходов n=4. Благоприятные исходы события А = {орел выпадает 1 раз} соответствуют варианту №2 и №3 эксперимента, таких вариантов два m=2.
Находим вероятность события Р(А)=m/n=2/4=0,5

Задача 2 . В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орел не выпадет ни разу.

Решение . Поскольку монету бросают дважды, то, как и в задаче 1, число возможных элементарных исходов n=4. Благоприятные исходы события А = {орел не выпадет ни разу} соответствуют варианту №4 эксперимента (см. таблицу в задаче 1). Такой вариант один, значит m=1.
Находим вероятность события Р(А)=m/n=1/4=0,25

Задача 3 . В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орёл выпадет ровно 2 раза.

Решение . Возможные варианты трех бросаний монеты (все возможные комбинации орлов и решек) представим в виде таблицы:

Из таблицы видим, что число возможных элементарных исходов n=8. Благоприятные исходы события А = {орел выпадает 2 раза} соответствуют вариантам №5, 6 и 7 эксперимента. Таких вариантов три, значит m=3.
Находим вероятность события Р(А)=m/n=3/8=0,375

Задача 4 . В случайном эксперименте симметричную монету бросают четыре раза. Найдите вероятность того, что орёл выпадет ровно 3 раза.

Решение . Возможные варианты четырех бросаний монеты (все возможные комбинации орлов и решек) представим в виде таблицы:

№ варианта 1-й бросок 2-й бросок 3-й бросок 4-й бросок № варианта 1-й бросок 2-й бросок 3-й бросок 4-й бросок
1 Орел Орел Орел Орел 9 Решка Орел Решка Орел
2 Орел Решка Решка Решка 10 Орел Решка Орел Решка
3 Решка Орел Решка Решка 11 Орел Решка Решка Орел
4 Решка Решка Орел Решка 12 Орел Орел Орел Решка
5 Решка Решка Решка Орел 13 Решка Орел Орел Орел
6 Орел Орел Решка Решка 14 Орел Решка Орел Орел
7 Решка Орел Орел Решка 15 Орел Орел Решка Орел
8 Решка Решка Орел Орел 16 Решка Решка Решка Решка

Из таблицы видим, что число возможных элементарных исходов n=16. Благоприятные исходы события А = {орел выпадет 3 раза} соответствуют вариантам №12, 13, 14 и 15 эксперимента, значит m=4.
Находим вероятность события Р(А)=m/n=4/16=0,25

Определение вероятности в задачах про игральную кость

Задача 5 . Определите вероятность того, что при бросании игрального кубика (правильной кости) выпадет более 3 очков.

Решение . При бросании игрального кубика (правильной кости) может выпасть любая из шести его граней, т.е. произойти любое из элементарных событий - выпадение от 1 до 6 точек (очков). Значит число возможных элементарных исходов n=6.
Событие А = {выпало более 3 очков} означает, что выпало 4, 5 или 6 точек (очков). Значит число благоприятных исходов m=3.
Вероятность события Р(А)=m/n=3/6=0,5

Задача 6 . Определите вероятность того, что при бросании игрального кубика выпало число очков, не большее 4. Результат округлите до тысячных.

Решение . При бросании игрального кубика может выпасть любая из шести его граней, т.е. произойти любое из элементарных событий - выпадение от 1 до 6 точек (очков). Значит число возможных элементарных исходов n=6.
Событие А = {выпало не более 4 очков} означает, что выпало 4, 3, 2 или 1 точка (очко). Значит число благоприятных исходов m=4.
Вероятность события Р(А)=m/n=4/6=0,6666…≈0,667

Задача 7 . Игральную кость бросают дважды. Найдите вероятность того, что оба раза выпало число, меньшее 4.

Решение . Так как игральную кость (игральный кубик) бросают дважды, то будем рассуждать следующим образом: если на первом кубике выпало одно очко, то на втором может выпасть 1, 2, 3, 4, 5, 6. Получаем пары (1;1), (1;2), (1;3), (1;4), (1;5), (1;6) и так с каждой гранью. Все случаи представим в виде таблицы из 6-ти строк и 6-ти столбцов:

1; 1 2; 1 3; 1 4; 1 5; 1 6; 1
1; 2 2; 2 3; 2 4; 2 5; 2 6; 2
1; 3 2; 3 3; 3 4; 3 5; 3 6; 3
1; 4 2; 4 3; 4 4; 4 5; 4 6; 4
1; 5 2; 5 3; 5 4; 5 5; 5 6; 5
1; 6 2; 6 3; 6 4; 6 5; 6 6; 6


Благоприятные исходы события А = {оба раза выпало число, меньшее 4} (они выделены жирным) подсчитаем и получим m=9.
Находим вероятность события Р(А)=m/n=9/36=0,25

Задача 8 . Игральную кость бросают дважды. Найдите вероятность того, что наибольшее из двух выпавших чисел равно 5. Ответ округлите до тысячных.

Решение . Все возможные исходы двух бросаний игральной кости представим в таблице:

1; 1 2; 1 3; 1 4; 1 5; 1 6; 1
1; 2 2; 2 3; 2 4; 2 5; 2 6; 2
1; 3 2; 3 3; 3 4; 3 5; 3 6; 3
1; 4 2; 4 3; 4 4; 4 5; 4 6; 4
1; 5 2; 5 3; 5 4; 5 5; 5 6; 5
1; 6 2; 6 3; 6 4; 6 5; 6 6; 6

Из таблицы видим, что число возможных элементарных исходов n=6*6=36.
Благоприятные исходы события А = {наибольшее из двух выпавших чисел равно 5} (они выделены жирным) подсчитаем и получим m=8.
Находим вероятность события Р(А)=m/n=8/36=0,2222…≈0,222

Задача 9 . Игральную кость бросают дважды. Найдите вероятность того, что хотя бы раз выпало число, меньшее 4.

Решение . Все возможные исходы двух бросаний игральной кости представим в таблице:

1; 1 2; 1 3; 1 4; 1 5; 1 6; 1
1; 2 2; 2 3; 2 4; 2 5; 2 6; 2
1; 3 2; 3 3; 3 4; 3 5; 3 6; 3
1; 4 2; 4 3; 4 4; 4 5; 4 6; 4
1; 5 2; 5 3; 5 4; 5 5; 5 6; 5
1; 6 2; 6 3; 6 4; 6 5; 6 6; 6

Из таблицы видим, что число возможных элементарных исходов n=6*6=36.
Фраза «хотя бы раз выпало число, меньшее 4» означает «число меньшее 4 выпало один раз или два раза», тогда число благоприятных исходов события А = {хотя бы раз выпало число, меньшее 4} (они выделены жирным) m=27.
Находим вероятность события Р(А)=m/n=27/36=0,75

Когда бросается монета, можно сказать, что она упадет орлом вверх, или вероятность этого составляет 1/2. Конечно, это не означает того, что если монета подбрасывается 10 раз, она обязательно упадет вверх орлом 5 раз. Если монета является "честной" и если она подбрасывается много раз, то орел выпадет очень близко в половине случаев. Таким образом, существует два вида вероятностей: экспериментальная и теоретическая .

Экспериментальная и теоретическая вероятность

Если бросить монетку большое количество раз - скажем, 1000 - и посчитать, сколько раз выпадет орел, мы можем определить вероятность того, что выпадет орел. Если орел выпадет 503 раза, мы можем посчитать вероятность его выпадения:
503/1000, или 0,503.

Это экспериментальное определение вероятности. Такое определение вероятности вытекает из наблюдения и изучения данных и является довольно распространенным и очень полезным. Вот, к примеру, некоторые вероятности которые были определены экспериментально:

1. Вероятность того, что у женщины разовьется рак молочной железы составляет 1/11.

2. Если вы целуетесь, с кем-то, кто болен простудой, то вероятность того, что вы тоже заболеете простудой, составляет 0,07.

3. Человек, который только что был освобожден из тюрьмы, имеет 80% вероятности возвращения назад в тюрьму.

Если мы рассматриваем бросание монеты и беря во внимание то, что столь же вероятно, что выпадет орел или решка, мы можем вычислить вероятность выпадение орла: 1 / 2. Это теоретическое определение вероятности. Вот некоторые другие вероятности, которые были определены теоретически, с помощью математики:

1. Если находится 30 человек в комнате, вероятность того, что двое из них имеют одинаковый день рождения (исключая год), составляет 0,706.

2. Во время поездки, Вы встречаете кого-то, и в течение разговора обнаруживаете, что у вас есть общий знакомый. Типичная реакция: "Этого не может быть!". На самом деле, эта фраза не подходит, потому что вероятность такого события достаточно высока - чуть более 22%.

Таким образом, экспериментальная вероятность определяются путем наблюдения и сбора данных. Теоретические вероятности определяются путем математических рассуждений. Примеры экспериментальных и теоретических вероятностей, как например, рассмотренных выше, и особенно тех, которые мы не ожидаем, приводят нас, к ваэности изучения вероятности. Вы можете спросить: "Что такое истинная вероятность?" На самом деле, таковой нет. Экспериментально можно определить вероятности в определенных пределах. Они могут совпадать или не совпадать с вероятностями, которые мы получаем теоретически. Есть ситуации, в которых гораздо легче определить один из типов вероятности, чем другой. Например, было бы довольно найти вероятность простудиться, используя теоретическую вероятность.

Вычисление экспериментальных вероятностей

Рассмотрим сначала экспериментальное определение вероятности. Основной принцип, который мы используем для вычисления таких вероятностей, является следующим.

Принцип P (экспериментальный)

Если в опыте, в котором проводится n наблюдений, ситуация или событие Е происходит m раз за n наблюдений, то говорят, что экспериментальная вероятность события равна P (E) = m/n.

Пример 1 Социологический опрос. Было проведено экспериментальное исследование, чтобы определить количество левшей, правшей и людей, у которых обе руки развиты одинаково Результаты показаны на графике.

a) Определите вероятность того, что человек - правша.

b) Определите вероятность того, что человек - левша.

c) Определите вероятность того, что человек одинаково свободно владеет обеими руками.

d) В большинстве турниров, проводимых Профессиональной Ассоциацией Боулинга, участвуют 120 игроков. На основании данных этого эксперимента, сколько игроков могут быть левшой?

Решение

a)Число людей, являющиеся правшами, составляет 82, количество левшей составляет 17, а число тех, кто одинаково свободно владеет двумя руками - 1. Общее количество наблюдений - 100. Таким образом, вероятность того, что человек правша, есть Р
P = 82/100, или 0,82, или 82%.

b) Вероятность того, что человек левша, есть Р, где
P = 17/100, или 0,17, или 17%.

c) Вероятность того, что человек одинаково свободно владеет двумя руками составляет P, где
P = 1/100, или 0,01, или 1%.

d) 120 игроков в боулинг, и из (b) мы можем ожидать, что 17% - левши. Отсюда
17% от 120 = 0,17.120 = 20,4,
то есть мы можем ожидать, что около 20 игроков являются левшами.

Пример 2 Контроль качества . Для производителя очень важно держать качество своей продукции на высоком уровне. На самом деле, компании нанимают инспекторов контроля качества для обеспечения этого процесса. Целью является выпуск минимально возможного количества дефектных изделий. Но так как компания производит тысячи изделий каждый день, она не может позволить себе проверять каждое изделие, чтобы определить, бракованное оно или нет. Чтобы выяснить, какой процент продукции являются дефектным, компания проверяет гораздо меньше изделий.
Министерство сельского хозяйства США требует, чтобы 80% семян, которые продают производители, прорастали. Для определения качества семян, которые производит сельхозкомпания, высаживается 500 семян из тех, которые были произведены. После этого подсчитали, что 417 семян проросло.

a) Какова вероятность того, что семя прорастет?

b) Отвечают ли семена государственным стандартам?

Решение a) Мы знаем, что из 500 семян, которые были высажены, 417 проросли. Вероятность прорастания семян Р, и
P = 417/500 = 0,834, или 83.4%.

b) Так как процент проросших семян превысил 80% по требованию, семена отвечают государственным стандартам.

Пример 3 Телевизионные рейтинги. Согласно статистических данных, в Соединенных Штатах 105 500 000 домохозяйств с телевизорами. Каждую неделю, информация о просмотре передач собирается и обрабатывается. В течение одной недели 7815000 домохозяйств были настроены на популярный комедийный сериал "Все любят Реймонда" на CBS и 8302000 домохозяйств были настроены на популярный сериал «Закон и порядок» на NBC (Источник: Nielsen Media Research). Какова вероятность того, что телевизор одного дома настроен на «Everybody Loves Raymond" в течение данной недели? на «Закон и порядок»?

Решениеn Вероятность того, что телевизор в одном домохозяйстве настроен на "Все любят Реймонда" равна Р, и
P = 7,815,000/105,500,000 ≈ 0,074 ≈ 7,4%.
Возможность, что телевизор домохозяйства был настроен на «Закон и порядок» составляет P, и
P = 8,302,000/105,500,000 ≈ 0,079 ≈ 7,9%.
Эти проценты называются рейтингами.

Теоретическая вероятность

Предположим, что мы проводим эксперимент, такие, как бросание монетки ли дротиков, вытаскивание карты из колоды, или проверка изделий на качество на сборочной линии. Каждый возможный результат такого эксперимента называется исход . Множество всех возможных исходов называется пространством исходов . Событие это множество исходов, то есть подмножество пространства исходов.

Пример 4 Бросание дротиков. Предположим, что в эксперименте «метание дротиков» дротик попадает в мишень. Найдите каждое из нижеследующих:

b) Пространство исходов

Решение
a) Исходы это: попадание в черное (Ч), попадание в красное (К) и попадание в белое (Б).

b) Пространство исходов есть {попадание в черное, попадание в красное, попадание в белое}, которое может быть записано просто как {Ч, К, Б}.

Пример 5 Бросание игральных костей. Игральная кость это куб с шестью гранями, на каждой их которых нарисовано от одной до шести точек.


Предположим, что мы бросаем игральную кость. Найдите
a) Исходы
b) Пространство исходов

Решение
a) Исходы: 1, 2, 3, 4, 5, 6.
b) Пространство исходов {1, 2, 3, 4, 5, 6}.

Мы обозначаем вероятность того, что событие Е случается в качестве Р (Е). Например, "монета упадет решкой" можно обозначать H. Тогда Р (Н) представляет собой вероятность того, монета упадет решкой. Когда все исходы эксперимента имеют одинаковую вероятность появления, говорят, что они равновероятны. Чтобы увидеть различия между событиями, которые равновероятны, и неравновероятными событиями, рассмотрим мишень, изображенную ниже.

Для мишени A, события попадания в черное, красное и белое равновероятны, так как черные, красные и белые сектора - одинаковые. Однако, для мишени B зоны с этими цветами не одинаковы, то есть попадание в них не равновероятно.

Принцип P (Теоретический)

Если событие E может случиться m путями из n возможных равновероятных исходов из пространства исходов S, тогда теоретическая вероятность события, P(E) составляет
P(E) = m/n.

Пример 6 Какая вероятность выкинуть 3, бросив игральный кубик?

Решение На игральном кубике 6 равновероятных исходов и существует только одна возможность выбрасивания цифры 3. Тогда вероятность P составит P(3) = 1/6.

Пример 7 Какая вероятность выбрасывания четной цифры на игральном кубике?

Решение Событие - это выбрасывание четной цифры. Это может случиться 3 способами (если выпадет 2, 4 или 6). Число равновероятных исходов равно 6. Тогда вероятность P(четное) = 3/6, или 1/2.

Мы будем использовать ряд примеров, связанных со стандартной колодой из 52 карт. Такая колода состоит из карт, показанных на рисунке ниже.

Пример 8 Какая вероятность вытянуть туза из хорошо перемешанной колоды карт?

Решение Существует 52 исхода (количество карт в колоде), они равновероятны (если колода хорошо перемешана), и есть 4 способа вытянуть туза, поэтому согласно принципу P, вероятность
P(вытягивания туза) = 4/52, или 1/13.

Пример 9 Предположим, что мы выбираем не глядя, один шарик из мешка с 3-мя красными шариками и 4-мя зелеными шариками. Какова вероятность выбора красного шарика?

Решение Существует 7 равновероятных исходов достать любой шарик, и так как число способов вытянуть красный шарик равно 3, получим
P(выбора красного шарика) = 3/7.

Следующие утверждения - это результаты из принципа P.

Свойства вероятности

a) Если событие E не может случиться, тогда P(E) = 0.
b) Если событие E случиться непременно тогда P(E) = 1.
c) Вероятность того, что событие Е произойдет это число от 0 до 1: 0 ≤ P(E) ≤ 1.

Например, в бросании монеты, событие, когда монета упадет на ребро имеет нулевую вероятность. Вероятность того, что монета либо на орел или решку имеет вероятность 1.

Пример 10 Предположим, что вытягиваются 2 карты из колоды с 52-мя картами. Какова вероятность того, что обе из них пики?

Решение Число путей n вытягивания 2 карт из хорошо перемешанной колоды с 52 картами есть 52 C 2 . Так как 13 из 52 карт являются пиками, число способов m вытягивания 2-х пик есть 13 C 2 . Тогда,
P(вытягивания 2-х пик)= m/n = 13 C 2 / 52 C 2 = 78/1326 = 1/17.

Пример 11 Предположим, что 3 человека выбираются случайно из группы, состоящей из 6-ти мужчин и 4-х женщин. Какова вероятность того, что будут выбраны 1 мужчина и 2 женщины?

Решение Число способов выбора троих человек из группы 10 человек 10 C 3 . Один мужчина может быть выбран 6 C 1 способами, и 2 женщины могут быть выбраны 4 C 2 способами. Согласно фундаментальному принципу подсчета, число способов выбора 1-го мужчины и 2-х женщин 6 C 1 . 4 C 2 . Тогда, вероятность что будет выбраны 1-го мужчины и 2-х женщин есть
P = 6 C 1 . 4 C 2 / 10 C 3 = 3/10.

Пример 12 Бросание игральных кубиков. Какая вероятность выбрасывания в сумме 8 на двух игральных кубиках?

Решение На каждом игральном кубике есть 6 возможных исходов. Исходы удваиваются, то есть существует 6.6 или 36 возможных способа, в котором могут выпасть цифры на двух кубиках. (Лучше, если кубики разные, скажем один красный а второй голубой - это поможет визуализировать результат.)

Пары цифр, в сумме составляющие 8, показаны на рисунке внизу. Есть 5 возможных способов получения суммы, равной 8, отсюда вероятность равна 5/36.

Загрузка...