musings.ru

Влияние нанотехнологий. Влияние нанотехнологий на политическую жизнь

В ходе конференции посвященной проблемам биобезопасности нанотехнологии ученые предложили правительству принять определенный регламент по контролю за продуктами наноиндустрии.

Правительства многих стран в наше время организуют специальные конференции и выделяют значительные суммы на изучение влияния нанотехнологии на окружающую среду.

Одним из вопросов, которым задаются как ученые, так и обыватели, в особенности жители мегаполисов, является воздух, который мы вдыхаем. Ни для кого не секрет, что наличие гигантского количества заболеваний хроническим бронхитом и астмой, включая врожденные случаи данной болезни, объясняются токсическими и загрязненными выбросами в атмосферу промышленных предприятий и бытовых устройств.

В данной связи ученые проводят исследование поведения наночастиц в атмосфере и последствия их вдыхания человеком. В результате опытов над лабораторными грызунами была выявлена высокая чувствительность клеток эпителия дыхательной системы к наночастицам, которые накапливались в носовых путях подопытных животных, вызывая риниты и другие, более тяжелые заболевания.

Не меньшее внимание привлекает проблема влияния наноматериалов на окружающую среду. Так было проведено исследование о риске для окружающей среды пяти основных типов наноматериалов, включая нанотрубки, квантовые точки и бакиболы. Исследователи определяли различные типы рисков загрязнения для разных технологических операций, включая производство лекарств, очистку нефти. На основании полученых данных профессор по охране окружающей среды делает в статье вывод, что создание наноматериалов представляет меньший риск, чем текущие индустриальные процессы.

Наночастицы, попадающие в почву не причинят экосистеме никакого заметного вреда. Был проведен ряд опытов, в которых фуллерены помещали в различные виду почв и затем исследовали их поведение и их влияние на микроорганизмы и минеральные вещества. Фуллерены представляют собой каркасные сферические многогранники, составленные из правильных пяти- и шестиугольников с атомами углерода в вершинах. Существенные изменения могли бы стать фатальными для элементов пищевых цепочек растений. Однако результаты наблюдений показали, что никакой негативной динамики не производит: микроорганизмы живут и здравствуют, баланс веществ не затронут.

Нанотехнологии, безусловно, способствуют техническому прогрессу человечества - ученые регулярно рапортуют о новых успехах, способных изменить жизнь и быт людей к лучшему. Разработанные с использованием нанотехнологий наночастицы могут помочь в лечении раковых заболеваний, Однако некоторые наночастицы, напротив, могут вызывать рак в организме человека. Наночастицы из диоксида титана (TiO2), которые сейчас встречаются во множестве продуктов, накапливаются в организме и приводят к системным генетическим повреждениям. Наночастицы из диоксида титана (TiO2) приводят к разрыву одно- и двухцепочечных ДНК, а также приводят к повреждению хромосом.

Попадая в организм титановые наночастицы накапливаются в различных органах, поскольку в организме нет механизмов их выведения. Вследствие своих малых размеров они легко проникают в клетки и начинают влиять на их элементы.

Масштабы использования наночастиц в производстве косметики растут с каждым годом, и, как считают производители, в этом нет ничего дурного. Иной позиции придерживаются некоторые экологи. Использование наночастиц в косметике не менее вредно, чем добавки мышьяка и свинца, полагают австралийские представители международной экологической организации «Друзья Земли». Во всех выбранных наугад тестовых группах продуктов, исследователи обнаружили наночастицы.

Нанотехнологии применяются в косметике куда шире, чем полагают потребители. Помимо наличия наночастиц, семьдесят процентов протестированных продуктов содержит химические усилители, которые облегчают проникновение наночастиц через кожу в кровь. Не избежали обвинений многие популярные производители и марки косметики. Наночастицы нашли в продуктах Клиник, Лаком, Л"Ореаль, Макс Фактор, Ревлон, Ив Сан Лоран, при том, что в составе они не были указаны. А вот производитель косметики Кристиан Диор не только включил наночастицы в состав продукции, но и указал их в списке ингредиентов.

Результаты исследования явно указывают на опастность новой косметики. В 2009 году в Евросоюзе был введен закон, согласно которому все кремы от загара, содержащие наноматериалы и наночастицы, должны пройти тестирование до 2012 года.

Этот случай - далеко не первый, когда экологи и ученые поднимают вопрос опасности, которую могут представлять современные нанотехнологии. В частности, некоторые ученые полагают, что появление наночастиц в атмосфере в промышленных масштабах может изменить климат Земли, а также предупреждают об опасности употребления пищи, созданной с использованием нанотехнологий

Американские ученые обнаружили в атмосфере Земли значительное количество наночастиц, которое продолжает увеличиваться. По их мнению, наночастицы, отражая солнечные лучи, могут серьезно изменить климат на планете, вызвав очередной Ледниковый период.

По последним наблюдениям американских ученых, в атмосфере нашей планеты уже находится значительное количество наночастиц, невидимых глазом, но могущих оказать влияние как на погодные процессы.

Количество наночастиц в разных частях света увеличивается, но почему это происходит остается загадкой. Ученые занимались вопросом того, как образуются наночастицы и каким образом происходит увеличение их количества, когда они вступают во взаимодействия с различными органическими испарениями.

Однако, им удалось выяснить, что некоторые виды органики быстро растут в атмосфере. Собираясь в больших количествах, они отражают солнечный свет назад в космос - своего рода обратный парниковый эффект. Кроме того, отмечают ученые, распространение наночастиц в воздухе может обострить такие заболевания, как астму, эмфизему и другие легочные заболевания.

Научное, экспертное сообщество стало осознавать в последнее время опасности и риски нерегулируемого развития наноиндустрии и нанопродукции из-за токсичности наноматериалов для живых систем и недостаточных исследований по этой проблеме. И дальше будет происходить радикальное преобразование современного производства, всех сфер жизни человека под воздействием нанотехнологий.

Однако эти перспективы останутся не реализованными без действенного контроля за негативными последствиями от использования нанотехнологий. Вернее изменения будут существенными, но в них будут преобладать реальные вредные последствия.

Можно сказать еще сильнее: от эффективности системы обеспечения безопасности зависит, выживет ли человечество в 21 веке. Эта проблема становится впереди опасностей, связанных с терроризмом и использованием оружия массового уничтожения.

Конечно, проблема безопасности нанотехнологий имеет свои специфические особенности, прежде всего связанные с тем, что наноматериалы станут общепринятыми, проникнут в быт, медицину, спорт, цивильную и военную технику, в одежду, обувь, продукты питания etc. Эти технологии междисциплинарные и межотраслевые и поэтому от них можно ждать успехов и рисков во всех сферах деятельности человека. Однако при всем при том положительный и негативный опыт, накопленный человечеством в 20ом веке при использовании мирного и немирного атома, методология, выработанная в этой отрасли, может быть перенесена, конечно, не механически, на защиту человека и природы от нанотехнологий.

А это означает, что с самого начала следует производить оценку безопасности для всего цикла, для любой вводимой в практику нанотехнологии и наноматериалов: на экспериментальной стадии, безопасность пилотных разработок, промышленного производства, во всех сферах использования, безопасность в потенциальных авариях, при остановке технологии, при хранении, захоронении отходов, содержащих наноматериалы. Об одной экстравагантной, грозной и непривычной опасности мы упоминали в другой главе книги, обсуждая спор между пионерами нанотехнологий Эриком Дрекслером и Робертом Смоли. Речь идет о выходе из под контроля самовоспроизводящихся, «размножающихся» молекулярных роботов-ассемблеров. Они способны продолжая бесконечную работу по самосборке из сырья окружающей среды в автономном режиме при адекватном снабжении энергией, перестроить, переработать любые среды, попадающиеся на их пути, в популяцию новых ассемблеров или как образно говорит Э.Дрекслер в «серую» грязь. Теоретически этот процесс, т.е. экспоненциальный рост, может продолжаться до тех пор, пока доступные энергии и материалы не будут исчерпаны. Веселенькая перспектива! Но это пока только теория.

Э. Дрекслер не только подробно обсуждал такую возможность и предлагал, в общих чертах, определить предостороженности, которые должны добровольно возложить на себя все страны, занимающиеся разработкой нанотехнологий.

Более традиционные виды опасностей связаны с химическими свойствами наночастиц, способными взаимодействовать с живыми системами. Как и в случае с ионизирующим излучением, наночастицы в клетке образуют суперактивные частицы - радикалы разной природы, сильные окислители (перекиси, синглетный кислород), способные нарушать процессы жизнедеятельности клетки, воздействую на ДНК, РНК и другие биологический объекты клетки.

Очень важным является дозиметрия наночастиц в живых организмах, что требует специальных прецизионных приборов и специальных методик. Поскольку проявление специфических, в том числе и токсилогических, свойств наночастицами связано с их характерным для них очень высоким соотношением поверхности к объему или массе, то эта величина S/V часто принимается за физическую меру потенциального воздействия на живую систему. Н, конечно, очень важно химическое строение, геометрия частиц, распределение их по размерам.

1. Перенос наночастиц (НЧ) в организме человека и окружающей среде (ОС).

Источники поступления НЧ в ОС.

Наночастицы в окружающей среде - явление не новое. К настоящему времени кроме естественных источников поступления наночастиц существует множество источников ненамеренного антропогенного загрязнения окружающей среде. С началом эры нанотехнологий к ним добавляется целый ряд намеренно созданных источников поступления нанообъектов в различные природные среды.

2. Пути поступления наночастиц в организм человека.

Поступление нанообъектов в организм человека не отличается от поступления других загрязнений и происходит:

  • - через дыхательные пути (домашний текстиль);
  • - с водой и пищей через кишечный тракт;
  • - через кожные покровы (одежда, белье) и слизистые оболочки;
  • - от загрязненных поверхностей.

В тоже время нанообъекты могут поступать в организм человека не как загрязнения, а по другим причинам:

  • - при использовании нанолекарств, нанокосметики, нанотекстиля;
  • - при постоянном контакте с бытовыми предметами и материалами, содержащими нанообъекты и наночастицы.

Немногочисленные, несистемные исследования по изучению влияния нанообъектов на животных и человека все же позволяют сделать следующие выводы, которые обязательно необходимо учитывать:

  • - разовое поступление нанообъектов в организм животного вызывает нежелательные изменения, интенсивность которых зависит от концентрации нанообъектов;
  • - нанообъекты имеют свойство накапливаться в органах и тканях (костный мозг, нервные клетки центральной и периферической нервных систем, лимфоузлах, мозге, легких, печени, почках).

Внутрь живой клетки нанообъекты проникают, преодолевая блокбарьеры. При этом они могут:

  • - воздействовать на составляющие живой клетки, нарушая его в основном за счет генерации активных частиц (радикалы, различные формы кислорода, перекиси);
  • - проникать внутрь метахондрий и блокировать их активную функцию;
  • - вызывать повреждение ДНК, блокировать активность рибосом.

Серьезность проблемы опасностей от применения нанотехнологий осознается в последнее время многими учеными и общественными деятелями во всем мире. С 2006 г. начал выходить специальный журнал Nanotоxicology; этой проблемой занимается Национальный институт здоровья США, Агентство по охране окружающей среды ЕРА, Национальный институт рака NCI и другие. В России и сама наноиндустрия пока очень слаба и соответственно должного, системного контроля над этой проблемой не существует. А в те же время из-за рубежа к нам поступает многочисленная нанопродукция (фармацевтика, питание, текстиль, косметика и др.) на десятки млрд. DS, которая не проходит никакой специальной сертификации. Необходима специальная независимая служба контроля, оборудованная на современном приборном уровне и работающая в рамках специального законодательство и при постоянном общественном контроле.

Опубликованные USEPA, EVSCENIHR и NRG, а также Международным Советом руководства рисками (JRGC) в 2006-2007 гг. отчеты подчеркивают недостаточность экспериментальных данных о потенциальных рисках в нанотехнологиях и в наномедицине.

До сих пор проводились исследования только на животных, целью которых было выявление принципов работы нанообъектов.

Проблема нанотоксичности может усугубляться из-за того, что токсичность нанообъектов не является простым переходом от токсичности массивных материалов того же химического строения к наномасштабам. Повторяем, что наночастицы по своей природе проявляют иные физико-химические свойства, зависящие не только от их размера, но и от адгезивных, каталитических, оптических, электрических, квантово-механических свойств, которые зависят не только от размера наночастиц, но и от их геометрии, распределения по размерам и порядка их организации в нанообъекте.

Более того, химические вещества, не проявляющие токсичности в обычной ненаноразмерной форме, могут ее проявлять в форме наночастиц. Типичный пример. Инертный углерод в обычной форме проявляет токсичность в форме фуллерена, углеродных нанотрубок. Подобная метаморфоза происходит с окислами металлов (титан).

  • - токсичность зависит от концентрации в организме наночастиц и площади их поверхности;
  • - токсичность зависит от физико-химической формы наночастиц;
  • - токсичность зависит от наносистемы, в которую включены наночастицы;
  • - токсичность наночастиц выше, чем микрочастиц;
  • - наночастицы вредны и для животных и для растений;
  • - практически нет данных по воздействию наночастиц и нанообъектов на человека и на экосистемы как целого, или на популяцию как части экосистемы.

В настоящее время в мире производится 2000 оригинальных наноматериалов. За 10 лет их использования не один вид из них не был изучен в полном объеме на безопасность.

Табл. 1. Опасности нанотехнологий и пути их преодоления

Опасность

Пути решения

специфические

Использование наноустройств

Просто страх: первые наноустройства не появятся раньше 2015-2020 года

Проводить разъяснительную работу и популяризировать соответствующие нанотехнологии

Нанотоксичность

Сообщения о вредном воздействии нанообъектов, недостаток экспериментальных данных

О механизмах нанотоксичности

Воздействие нанообъектов на ДНК и геномные процессы

Сообщения о воздействии нанообъектов на ДНК, недостаток экспериментальных данных

Проведение дополнительных экспериментальных исследований, формирование теоретических представлений

Проникновение НО внутрь клеток, органов тканей

Сообщения о проникновении НО через биомембраны, недостаток экспериментальных данных

Проведение дополнительных экспериментальных исследований, формирование теоретических представлений

неспецифические

Новое и непривычное

Просто страх

Проводить разъяснительную работу по нанотехнологиям

Потеря денег с неясной пользой

Отсутствие работ по анализу соотношения польза-вред

Организация исследований по соотношению польза-вред от применения нанотехнологий

Отсутствие работ по анализу и оценке риска нанотехнологий

Организация исследований по анализу и оценке риска нанотехнологий

Незащищенность, незаконность

Отсутствие законодательной и нормативной базы

Разработка законодательных и нормативных документов, регулирующих производство и обращение нанотехнологий

Помимо безопасности возникают и нравственно-этические проблемы от применения нанотехнологий, особенно для медицины, косметики, бытовой техники, одежды, домашнего текстиля, военной техники и др.

Общество должно иметь в своем распоряжении полную, объективную и ясную для понимания информацию о достоинствах и недостатках нанотехнологий и принимать участие в решениях стратегических вопросов в лице экспертного сообщества и общественных организаций.

Следует признать, что во всем мире исследования по безопасности нанотехнологий существенно отстоят от их разработки и коммерциализации. А затраты на выявление этических, юридических и социальных последствий внедрения нанотехнологий резко отстает от исследований влияния на здоровье человека и окружающей среды.

Это состояние необходимо срочно на планетарном уровне менять, если мы не хотим загубить нашу общую цивилизацию; менять путем законодательств международного и федерального уровней.



Добавить свою цену в базу

Комментарий

Нанотехнология – область фундаментальной и прикладной науки и техники, имеющая дело с совокупностью теоретического обоснования, практических методов исследования, анализа и синтеза, а также методов производства и применения продуктов с заданной атомной структурой путём контролируемого манипулирования отдельными атомами и молекулами.

История

Многие источники, в первую очередь англоязычные, первое упоминание методов, которые впоследствии будут названы нанотехнологией, связывают с известным выступлением Ричарда Фейнмана «Внизу полным-полно места» (англ. «There’s Plenty of Room at the Bottom»), сделанным им в 1959 году в Калифорнийском технологическом институте на ежегодной встрече Американского физического общества. Ричард Фейнман предположил, что возможно механически перемещать одиночные атомы при помощи манипулятора соответствующего размера, по крайней мере, такой процесс не противоречил бы известным на сегодняшний день физическим законам.

Этот манипулятор он предложил делать следующим способом. Необходимо построить механизм, создававший бы свою копию, только на порядок меньшую. Созданный меньший механизм должен опять создать свою копию, опять на порядок меньшую и так до тех пор, пока размеры механизма не будут соизмеримы с размерами порядка одного атома. При этом необходимо будет делать изменения в устройстве этого механизма, так как силы гравитации, действующие в макромире, будут оказывать все меньшее влияние, а силы межмолекулярных взаимодействий и Ван-дер-Ваальсовы силы будут все больше влиять на работу механизма.

Последний этап – полученный механизм соберёт свою копию из отдельных атомов. Принципиально число таких копий неограниченно, можно будет за короткое время создать произвольное число таких машин. Эти машины смогут таким же способом, поатомной сборкой, собирать макровещи. Это позволит сделать вещи на порядок дешевле – таким роботам (нанороботам) нужно будет дать только необходимое количество молекул и энергию, и написать программу для сборки необходимых предметов. До сих пор никто не смог опровергнуть эту возможность, но и никому пока не удалось создать такие механизмы. В ходе теоретического исследования данной возможности появились гипотетические сценарии конца света, которые предполагают, что нанороботы поглотят всю биомассу Земли, выполняя свою программу саморазмножения (так называемая «серая слизь» или «серая жижа»).

Первые предположения о возможности исследования объектов на атомном уровне можно встретить в книге «Opticks» Исаака Ньютона, вышедшей в 1704 году. В книге Ньютон выражает надежду, что микроскопы будущего когда-нибудь смогут исследовать «тайны корпускул».

Впервые термин «нанотехнология» употребил Норио Танигути в 1974 году. Он назвал этим термином производство изделий размером несколько нанометров. В 1980-х годах этот термин использовал Эрик К. Дрекслер в своих книгах: «Машины создания: Грядущая эра нанотехнологии» («Engines of Creation: The Coming Era of Nanotechnology») и «Nanosystems: Molecular Machinery, Manufacturing, and Computation».

На что способны нанотехнологии?

Вот только некоторые области, в которых нанотехнологии обещают прорыв:

Медицина

Наносенсоры обеспечат прогресс в ранней диагностике заболеваний. Это увеличит шансы на выздоровление. Мы сможем победить рак и другие болезни. Старые лекарства от рака уничтожали не только больные клетки, но и здоровые. С помощью нанотехнологий лекарство будет доставляться непосредственно в больную клетку.

ДНК‑нанотехнологии – используют специфические основы молекул ДНК и нуклеиновых кислот для создания на их основе четко заданных структур. Промышленный синтез молекул лекарств и фармакологических препаратов четко определенной формы (бис‑пептиды).

В начале 2000‑го года, благодаря быстрому прогрессу в технологии изготовления частиц наноразмеров, был дан толчок к развитию новой области нанотехнологии –наноплазмонике . Оказалось возможным передавать электромагнитное излучение вдоль цепочки металлических наночастиц с помощью возбуждения плазмонных колебаний.

Строительство

Нанодатчики строительных конструкций будут следить за их прочностью, обнаруживать любые угрозы целостности. Объекты, построенные с использованием нанотехнологий, смогут прослужить в пять раз дольше, чем современные сооружения. Дома будут подстраиваться под потребности жильцов, обеспечивая им прохладу летом и сохраняя тепло зимой.

Энергетика

Мы меньше будем зависеть от нефти и газа. У современных солнечных батарей КПД около 20%. С применением нанотехнологий он может вырасти в 2-3 раза. Тонкие нанопленки на крыше и стенах смогут обеспечить энергией весь дом (если, конечно, солнца будет достаточно).

Машиностроение

Всю громоздкую технику заменят роботы – легко управляемые устройства. Они смогут создавать любые механизмы на уровне атомов и молекул. Для производства машин будут использоваться новые наноматериалы, которые способны снижать трение, защищать детали от повреждений, экономить энергию. Это далеко не все сферы, в которых могут (и будут!) применяться нанотехнологии. Ученые считают, что появление нанотехнологий – начало новой Научно-технической революции, которая сильно изменит мир уже в ХХI веке. Стоит, правда, заметить, что в реальную практику нанотехнологии входят не очень быстро. Не так много устройств (в основном электроника) работает «с нано». Отчасти это объясняется высокой ценой нанотехнологий и не слишком высокой отдачей от нанотехнологической продукции.

Вероятно, уже в недалёком будущем с помощью нанотехнологий будут созданы высокотехнологичные, мобильные, легко управляемые устройства, которые успешно заменят пусть и автоматизированную, но сложную в управлении и громоздкую технику сегодняшнего дня. Так, например, со временем биороботы, управляемые посредством компьютера, смогут выполнять функции нынешних громоздких насосных станций.

  • ДНК‑компьютер – вычислительная система, использующая вычислительные возможности молекул ДНК. Биомолекулярные вычисления – это собирательное название для различных техник, так или иначе связанных с ДНК или РНК. При ДНК‑вычислениях данные представляются не в форме нулей и единиц, а в виде молекулярной структуры, построенной на основе спирали ДНК. Роль программного обеспечения для чтения, копирования и управления данными выполняют особые ферменты.
  • Атомно‑силовой микроскоп – сканирующий зондовый микроскоп высокого разрешения, основанный на взаимодействии иглы кантилевера (зонда) с поверхностью исследуемого образца. В отличие от сканирующего туннельного микроскопа (СТМ), может исследовать как проводящие, так и непроводящие поверхности даже через слой жидкости, что позволяет работать с органическими молекулами (ДНК). Пространственное разрешение атомно‑силового микроскопа зависит от размера кантилевера и кривизны его острия. Разрешение достигает атомарного по горизонтали и существенно превышает его по вертикали.
  • Антенна‑осциллятор – 9 февраля 2005 года в лаборатории Бостонского университета была получена антенна‑осциллятор размерами порядка 1 мкм. Это устройство насчитывает 5000 миллионов атомов и способно осциллировать с частотой 1,49 гигагерц, что позволяет передавать с ее помощью огромные объемы информации.

10 нанотехнологий с удивительным потенциалом

Попробуйте вспомнить какое-нибудь каноническое изобретение. Вероятно, кто-то сейчас представил себе колесо, кто-то самолет, а кто-то и «айпод». А многие ли из вас подумали об изобретении совсем нового поколения – нанотехнологиях? Этот мир малоизучен, но обладает невероятным потенциалом, способным подарить нам действительно фантастические вещи. Удивительная вещь: направление нанотехнологий не существовало до 1975 года, даже несмотря на то, что ученые начали работать в этой сфере гораздо раньше.

Невооруженный глаз человека способен распознать объекты размером до 0,1 миллиметра. Мы же сегодня поговорим о десяти изобретениях, которые в 100 000 раз меньше.

Электропроводимый жидкий металл

За счет электричества можно заставить простой сплав жидкого металла, состоящий из галлия, иридия и олова, образовывать сложные фигуры или же наматывать круги внутри чашки Петри. Можно с некоторой долей вероятности сказать, что это материал, из которого был создан знаменитый киборг серии T-1000, которого мы могли видеть «Терминаторе 2».

«Мягкий сплав ведет себя как умная форма, способная при необходимости самостоятельно деформироваться с учетом изменяющегося окружающего пространства, по которому он движется. Прямо как мог делать киборг из популярной научно-фантастической киноленты», – делится Джин Ли из университета Цинхуа, один из исследователей, занимавшихся данным проектом.

Этот металл биомиметический, то есть он имитирует биохимические реакции, хотя сам не является биологическим веществом.

Управлять этим металлом можно за счет электрических разрядов. Однако он и сам способен самостоятельно передвигаться, за счет появляющегося дисбаланса нагрузки, которое создается разностью в давлении между фронтальной и тыльной частью каждой капли этого металлического сплава. И хотя ученые считают, что этот процесс может являться ключом к конвертации химической энергии в механическую, молекулярный материал в ближайшем будущем не собираются использовать для строительства злых киборгов. Весь процесс «магии» может происходить только в растворе гидроксида натрия или соляном растворе.

Нанопластыри

Исследователи из Йоркского университета работают над созданием специальных пластырей, которые будут предназначаться для доставки всех необходимых лекарств внутрь организма без какого-либо использования иголок и шприцов. Пластыри вполне себе обычного размера приклеиваются к руке, доставляют определенную дозу наночастиц лекарственного средства (достаточно маленькие, чтобы проникнуть через волосяные фолликулы) внутрь вашего организма. Наночастицы (каждая размером менее 20 нанометров) сами найдут вредоносные клетки, убьют их и будут выведены из организма вместе с другими клетками в результате естественных процессов.

Ученые отмечают, что в будущем такие нанопластыри можно будет использовать при борьбе с одним из самых страшных заболеваний на Земле – раком. В отличие от химиотерапии, которая в таких случаях чаще всего является неотъемлемой частью лечения, нанопластыри смогут в индивидуальном порядке находить и уничтожать раковые клетки и оставлять при этом здоровые клетки нетронутыми. Проект нанопластыря получил название «NanJect». Его разработкой занимаются Атиф Сайед и Закария Хуссейн, которые в 2013 году, еще будучи студентами, получили необходимое спонсирование в рамках краудсорсинговой компании по привлечению средств.

Нанофильтр для воды

При использовании этой пленки в сочетании с тонкой сеткой из нержавеющей стали нефть отталкивается, и вода в этом месте становится первозданно чистой.

Что интересно, на создание нанопленки ученых вдохновила сама природа. Листья лотоса, также известного как водяная лилия, обладают свойствами, противоположными свойствам нанопленки: вместо нефти они отталкивают воду. Ученые уже не первый раз подглядывают у этих удивительных растений их не менее удивительные свойства. Результатом этого, например, стало создание супергидрофобных материалов в 2003 году. Что же касается нанопленки, исследователи стараются создать материал, имитирующий поверхность водяных лилий, и обогатить его молекулами специального очищающего средства. Само покрытие невидимо для человеческого глаза. Производство будет недорогим: примерно 1 доллар за квадратный фут.

Очиститель воздуха для подводных лодок

Вряд ли кто-то задумывался о том, каким воздухом приходится дышать экипажам подводных лодок, кроме самих членов экипажа. А между тем очистка воздуха от двуокиси углерода должна производиться немедленно, так как за одно плаванье через легкие команды подлодки одному и тому же воздуху приходится проходить сотни раз. Для очистки воздуха от углекислого газа используют амины, обладающие весьма неприятным запахом. Для решения этого вопроса была создана технология очистки, получившая название SAMMS (аббревиатура от Self-Assembled Monolayers on Mesoporous Supports). Она предлагает использование специальных наночастиц, помещенных внутрь керамических гранул. Вещество обладает пористой структурой, благодаря которой оно поглощает избыток углекислого газа. Различные типы очистки SAMMS взаимодействуют с различными молекулами в воздухе, воде и земле, однако все из этих вариантов очисток невероятно эффективны. Всего одной столовой ложки таких пористых керамических гранул хватит для очистки площади, равной одному футбольному полю.

Нанопроводники

Исследователи Северо-Западного университета (США) выяснили, как создать электрический проводник на наноуровне. Этот проводник представляет собой твердую и прочную наночастицу, которая может быть настроена на передачу электрического тока в различных противоположных направлениях. Исследование показывает, что каждая такая наночастица способна эмулировать работу «выпрямителя тока, переключателей и диодов». Каждая частица толщиной 5 нанометров покрыта положительно заряженным химическим веществом и окружена отрицательно заряженными атомами. Подача электрического разряда реконфигурирует отрицательно заряженные атомы вокруг наночастиц.

Потенциал у технологии, как сообщают ученые, небывалый. На ее основе можно создавать материалы, «способные самостоятельно изменяться под определенные компьютерные вычислительные задачи». Использование этого наноматериала позволит фактически «перепрограммировать» электронику будущего. Аппаратные обновления станут такими же легкими, как и программные.

Нанотехнологическое зарядное устройство

Когда эту штуку создадут, то вам больше не потребуется использовать никакие проводные зарядные устройства. Новая нанотехнология работает как губка, только впитывает не жидкость. Она высасывает из окружающей среды кинетическую энергию и направляет ее прямо в ваш смартфон. Основа технологии заключается в использовании пьезоэлектрического материала, который генерирует электричество, находясь в состоянии механического напряжения. Материал наделен наноскопическими порами, которые превращают его в гибкую губку.

Официальное название этого устройства – «наногенератор». Такие наногенераторы могут однажды стать частью каждого смартфона на планете или же частью приборной панели каждого автомобиля, а возможно, и частью каждого кармана одежды – гаджеты будут заряжаться прямо в нем. Кроме того, технология имеет потенциал использования на более масштабном уровне, например, в промышленном оборудовании. По крайней мере так считают исследователи из Висконсинского университета в Мадисоне, создавшие эту удивительную наногубку.

Искусственная сетчатка

Израильская компания Nano Retina разрабатывает интерфейс, который будет напрямую подключатся к нейронам глаза и передавать результат нейронного моделирования в мозг, заменяя сетчатку и возвращая людям зрение.

Эксперимент на слепой курице показал надежду на успешность проекта. Нанопленка позволила курице увидеть свет. Правда, до конечной стадии разработки искусственной сетчатки для возвращения людям зрения пока еще далеко, но наличие прогресса в этом направлении не может не радовать. Nano Retina – не единственная компания, которая занимается подобными разработками, однако именно их технология на данный момент видится наиболее перспективной, эффективной и адаптивной. Последний пункт наиболее важен, так как мы говорим о продукте, который будет интегрироваться в чьи-то глаза. Похожие разработки показали, что твердые материалы непригодны для использования в подобных целях.

Так как технология разрабатывается на нанотехнологическом уровне, она позволяет исключить использование металла и проводов, а также избежать низкого разрешения моделируемой картинки.

Светящаяся одежда

Шанхайские ученые разработали светоотражающие нити, которые можно использовать при производстве одежды. Основой каждой нити является очень тонкая проволока из нержавеющей стали, которую покрывают специальными наночастицами, слоем электролюминесцентного полимера, а также защитной оболочкой из прозрачных нанотрубок. В результате получаются очень легкие и гибкие нитки, способные светиться под воздействием своей собственной электрохимической энергии. При этом работают они на гораздо меньшей мощности, по сравнению с обычными светодиодами.

Недостаток технологии заключается в том, что «запаса света» у ниток хватает пока всего лишь на нескольких часов. Однако разработчики материла оптимистично считают, что смогут увеличить «ресурс» своего продукта как минимум в тысячу раз. Даже если у них все получится, решение другого недостатка пока остается под вопросом. Стирать одежду на основе таких нанониток, скорее всего, будет нельзя.

Наноиглы для восстановления внутренних органов

Нанопластыри, о которых мы говорили выше, разработаны специально для замены игл. А что, если сами иглы были бы размером всего несколько нанометров? В таком случае они могли бы изменить наше представление о хирургии, или по крайней мере существенно ее улучшить.

Совсем недавно ученые провели успешные лабораторные испытания на мышах. С помощью крошечных игл исследователи смогли ввести в организмы грызунов нуклеиновые кислоты, способствующие регенерации органов и нервных клеток и тем самым восстанавливающие утерянную работоспособность. Когда иглы выполняют свою функцию, они остаются в организме и через несколько дней полностью в нем разлагаются. При этом никаких побочных эффектов во время операций по восстановлению кровеносных сосудов мышц спины грызунов с использованием этих специальных наноигл ученые не обнаружили.

Если брать в расчет человеческие случаи, то такие наноиглы могут использоваться для доставки необходимых средств в организм человека, например, при трансплантации органов. Специальные вещества подготовят окружающие ткани вокруг трансплантируемого органа к быстрому восстановлению и исключат возможность отторжения.

Трехмерная химическая печать

Химик Иллинойского университета Мартин Берк – настоящий Вилли Вонка из мира химии. Используя коллекцию молекул «строительного материала» самого разного назначения, он может создавать огромное число различных химических веществ, наделенных всевозможными «удивительными и при этом естественными свойствами». Например, одним из таких веществ является ратанин, который можно найти только в очень редком перуанском цветке.

Потенциал синтезирования веществ настолько огромен, что позволит производить молекулы, использующиеся в медицине, при создании LED-диодов, ячеек солнечных батарей и тех химических элементов, на синтезирование которых даже у самых лучших химиков планеты уходили годы.

Возможности нынешнего прототипа трехмерного химического принтера пока ограничены. Он способен создавать только новые лекарственные средства. Однако Берк надеется, что однажды он сможет создать потребительскую версию своего удивительного устройства, которая будет обладать куда большими возможностями. Вполне возможно, что в будущем такие принтеры будут выступать в роли своеобразных домашних фармацевтов.

Представляет ли нанотехнология угрозу здоровью человека или окружающей среде?

Информации о негативном воздействии наночасттиц не так уж и много. В 2003 г. в одном из исследований было показано, что углеродные нанотрубки могут повреждать легкие у мышей и крыс. Исследование 2004 г. показало, что фуллерены могут накапливаться и вызывать повреждения мозга у рыб. Но в обоих исследованиях были использованы большие порции вещества при необычных условиях. По словам одного из экспертов, химика Кристена Кулиновски (США), «было бы целесообразно ограничить воздействие этих наночастиц, невзирая на то, что в настоящее время информация об их угрозе человеческому здоровью отсутствует».

Некоторые комментаторы высказываются также относительно того, что широкое использование нанотехнологий может привести к рискам социального и этического плана. Так, к примеру, если использование нанотехнологий инициирует новую промышленную революцию, то это приведет к потере рабочих мест. Более того, нанотехнологии могут изменить представление о человеке, поскольку их использование поможет продлевать жизнь и существенно повышать устойчивость организма. «Никто не может отрицать, что широкое распространение мобильных телефонов и интернета привело к огромным изменениям в обществе», – говорит Кристен Кулиновски. – Кто возьмет на себя смелость сказать, что нанотехнологии не окажут более сильного воздействия на общество в ближайшие годы?»

Место России среди стран, разрабатывающих и производящих нанотехнологии

Мировыми лидерами по общему объему капиталовложений в сфере нанотехнологий являются страны ЕС, Япония и США. В последнее время значительно увеличили инвестиции в эту отрасль Россия, Китай, Бразилия и Индия. В России объем финансирования в рамках программы «Развитие инфраструктуры наноиндустрии в Российской Федерации на 2008 – 2010 годы» составит 27,7 млрд.руб.

В последнем (2008 год) отчете лондонской исследовательской фирмы Cientifica, который называется «Отчет о перспективах нанотехнологій», о российских вложениях написано дословно следующее: «Хотя ЕС по уровню вложений все еще занимает первое место, Китай и Россия уже обогнали США».

В нанотехнологиях существуют такие области, где российские ученые стали первыми в мире, получив результаты, положившие начало развитию новых научных течений.

Среди них можно выделить получение ультрадисперсных наноматериалов, проектирование одноэлектронных приборов, а также работы в области атомно‑силовой и сканирующей зондовой микроскопии. Только на специальной выставке, проводившейся в рамках XII Петербургского экономического форума (2008 год), было представлено сразу 80 конкретных разработок. В России уже производится целый ряд нанопродуктов, востребованных на рынке: наномембраны, нанопорошки, нанотрубки. Однако, по мнению экспертов, по комммерциализации нанотехнологических разработок Россия отстает от США и других развитых стран на десять лет.

Нанотехнологии в искусстве

Ряд произведений американской художницы Наташи Вита-Мор касается нанотехнологической тематики.

В современном искусстве возникло новое направление «наноарт» (наноискусство) – вид искусства, связанный с созданием художником скульптур (композиций) микро- и нано-размеров (10 −6 и 10 −9 м, соответственно) под действием химических или физических процессов обработки материалов, фотографированием полученных нано-образов с помощью электронного микроскопа и обработкой черно-белых фотографий в графическом редакторе.

В широко известном произведении русского писателя Н. Лескова «Левша» (1881 год) есть любопытный фрагмент: «Если бы, – говорит, – был лучше мелкоскоп, который в пять миллионов увеличивает, так вы изволили бы, – говорит, – увидать, что на каждой подковинке мастерово имя выставлено: какой русский мастер ту подковку делал». Увеличение в 5 000 000 раз обеспечивают современные электронные и атомно-силовые микроскопы, считающиеся основными инструментами нанотехнологий. Таким образом, литературного героя Левшу можно считать первым в истории «нанотехнологом».

Изложенные Фейнманом в лекции 1959 г. «Там внизу много места» идеи о способах создания и применения наноманипуляторов совпадают практически текстуально с фантастическим рассказом известного советского писателя Бориса Житкова «Микроруки», опубликованным в 1931 году. Некоторые отрицательные последствия неконтролируемого развития нанотехнологий описаны в произведениях М. Крайтона («Рой»), С. Лема («Осмотр на месте» и «Мир на Земле»), С. Лукьяненко («Нечего делить»).

Главный герой романа «Трансчеловек» Ю. Никитина – руководитель нанотехнологической корпорации и первый человек, испытавший на себе действие медицинских нанороботов.

В научно-фантастических сериалах «Звёздные врата: SG-1» и «Звёздные врата: Атлантида» одними из самых технически развитых рас являются две расы «репликаторов», возникших в результате неудачных опытов с использованием и описанием различных вариантов применения нанотехнологий. В фильме «День, когда Земля остановилась» с Киану Ривзом в главной роли, инопланетная цивилизация выносит человечеству смертный приговор и чуть было не уничтожает всё на планете при помощи самовоспроизводящихся нанорепликантов-жуков, пожирающих всё на своём пути.

В марте 2008 г. более ста ученых из разных стран мира встретились в Швейцарии на конференции «nanoECO» для обсуждения проблем, связанных с воздействием синтезированных наночастиц на окружающую среду . Хотя нано-экотоксикология является молодой областью исследований, были представлены интересные и важные результаты. Конечно, в центре внимания были нерешенные проблемы: как и в каких количествах наночастицы из «нанопродуктов» попадают в окружающую среду; какой будет, к примеру, уровень загрязнений рек, почвы; какие аналитические методы могут быть эффективно использованы?

Вопрос о применимости методов исследований очень важен. H.Krug в своем докладе подчеркнул, что на данные о токсичности углеродных нанотрубок (УНТ) наряду с присутствующими в них примесями металлов (признанный эффект) могут повлиять и реактивы, применяемые для экспериментов in vitro ! В этом случае выводы о вреде нанотрубок могут оказаться ложными. Поэтому при оценке токсичности очень важно правильно охарактеризовать не только сами наноматериалы, но и аналитические методы, используемые в исследованиях.

«Зеленая» химия, «зеленая» энергетика… Эти термины появились в конце прошлого века и сразу стали очень популярными. В последние годы чрезвычайно возрос интерес к ресурсосберегающим экологически чистым зеленым технологиям, инвестиции в фирмы зеленых технологий постоянно увеличиваются. «Зеленой нанотехнологии» посвящен доклад B.Karn . Зеленая нанотехнология, как объясняет автор, – это способ создания и использования наноматериалов и нанопродукции без нанесения ущерба окружающей среде и здоровью человека. Таким образом, с одной стороны к зеленой нанотехнологии относится производство наноматериалов и продуктов с использованием принципов зеленой химии и зеленых технологий (что улучшает окружающую среду косвенным образом), а с другой – создание нанопродуктов, которые непосредственно участвуют в решении прошлых, настоящих и будущих проблем, связанных с защитой природы и здоровьем людей (например, сорбенты для очистки сточных вод или питьевой воды, новые катализаторы, энергетические системы).

Результаты компьютерного моделирования транспорта трех наиболее распространенных видов наночастиц (нано-Ag, нано-TiO 2 и УНТ), представленные в докладе швейцарских ученых B.Nowack и N.Mueller оказались настолько интересными, что были полностью опубликованы в журнале «Environmental Science & Technology» и прокомментированы в июньском выпуске «Nature Nanotechnology» . Рассмотрим их подробнее.

Наночастицы Ag и TiO 2 наиболее широко представлены в потребительских товарах. Считается, что нано-серебро обладает противомикробными, противогрибковыми и другими полезными свойствами, а нано-TiO 2 производится в больших количествах для использования в самоочищающихся, необрастающих, противомикробных покрытиях и красках, а также в косметических средствах как поглотитель УФ (только в Австралии имеется более 300 зарегистрированных солнцезащитных продуктов, содержащих наночастицы TiO 2). Третий изученный наноматериал – углеродные нанотрубки – не нуждается в представлении нашим постоянным читателям.

В модели использовались следующие входные данные: оценки объемов мирового производства, концентрации наночастиц в различных продуктах, выход наночастиц из продуктов и параметры потоков в окружающую среду (от установок для сжигания отходов, мусорных свалок, и/или установок для очистки сточных вод) и между ее областями (воздух, почва, вода). Рассмотрен весь цикл использования продуктов, содержащих наночастицы, – от производства до утилизации. Модель такого типа обычно применяется в определении воздействия химических продуктов.

Авторы сделали оценку риска для трех областей окружающей среды – воды (реки и озера), воздуха, почвы в Швейцарии (рис.1). Было рассмотрено два сценария – реалистичный (RE – realistic ), основанный на имеющейся информации, и худший (HE – high exposure ), основанный на оценках, предполагающих наличие более высоких концентраций. Результаты сравнивались с величинами, которые по данным токсикологических исследований не вызывают негативных эффектов (PNEC – predicted no-effect concentration ). Риск выражался как отношение прогнозируемой концентрации в окружающей среде PEC (PEC – predicted environmental concentrations ) к PNEC. Материалы, для которых это отношение меньше единицы, считаются безопасными.

Рис.1. Возможное распределение наноматериалов в окружающей среде (воздух; почва, растительность; почва, покрытая растительностью; вода; отложения)

К сожалению, невозможно найти перечень всей продукции, содержащей наночастицы. Многие производители не информируют об их наличии. Вероятно, в ближайшие годы ситуация изменится к лучшему, а пока авторы использовали для анализа параметры, некоторые из которых представлены в таблице 1.

Таблица 1. Параметры, использованные при моделировании транспорта наночастиц в Швейцарии

Наночастицы Категория продукции % от общего колич. Способ выделения % Область выделения
нано-Ag текстиль 10 истирание при использовании

истирание при стирке

утилизация

разложение

5 воздух

очистка сточных вод

сжигание мусора

живая система

живая система

живая система

косметика

25 использование

утилизация

95 очистка сточных вод

сжигание мусора

аэрозоли

чистящиесредства

15

использование

утилизация

истирание

95 воздух, стоки, почва

сжигание мусора

очистка сточных вод

металлическаяпродукция 5

утилизация

разложение

истирание

47,5 живая система

сжигание мусора

живая система

очистка сточных вод

пластмассы 10 утилизация

разложение

50 сжигание мусора

живая система

почва, сточные воды

разложение

утилизация

45 живая система

место утилизации

нано-TiO 2 пластмассы 2 истирание

утилизация

5 воздух, сточные воды

сжигание мусора

косметика

60 использование

утилизация

95 сточные воды, вода

сжигание мусора

покрытия 2

использование

утилизация

95 сточные воды, воздух

сжигание мусора

металлы 1

истирание

утилизация

5 сточные воды

живая система

сжигание мусора

хранение/

производствоэнергии

10

утилизация

25 сжигание мусора

живая система

25

утилизация

50 сточные воды, почва

место утилизации

УНТ пластмассы,

спортивное

Оборудование

50 истирание

утилизация

5 воздух

сжигание мусора

электроника,батареи 50 рецикл

утилизация

40 живая система

сжигание мусора

место утилизации

экспорт 50 живая система

В таблице 2 приведены величины PEC, полученные в для двух сценариев (RE и HE).

Таблица 3

Оценка риска (PEC/PNEC) в окружающей среде
Нано – Ag Нано – TiO 2 УНТ
RE HE RE HE RE HE
Воздух н/o н/o 0,0015 0,004 1,5х10 -5 2,3х10 -3
Вода 0,0008 0,002 >0,7 >16 0,005 0,008
Почва н/о н/о н/о н/о н/о н/о

н/о – не определен из-за отсутствия экотоксикологических данных

Как видно из табл. 2, величины PEC для УНТ являются самыми низкими (хотя, конечно, в будущем при росте производства ситуация может измениться). Содержание в воздухе мало для всех трех типов наночастиц. Частицы наносеребра и нанооксида титана в основном находятся в воде и почве, при этом содержание нано-Ag в 20–200 раз ниже, чем нано-TiO 2 . УНТ в воду практически не попадают.

На основе полученных величин РЕС теперь можно определить, какие наночастицы и где представляют наибольший риск (табл. 3).

Результаты моделирования показывают, что в настоящее время УНТ не представляют риска для окружающей среды. Основная часть продуктов, содержащих нанотрубки, или идет в повторный цикл, или попадает в установки для сжигания мусора, где УНТ в присутствии кислорода сгорают практически полностью (температура в установках примерно 850 о С). А вот отношение PEC/PNEC для нано-TiO 2 в воде приближается к единице или даже больше нее, указывая на наличие значимого риска.

Конечно, это предварительные результаты. Например, сознательно не рассматриваются трансформация, деградация, биоаккумулирование наночастиц, хотя эти процессы могут играть важную роль. Не учтены выбросы из мест производства. Тем не менее, результаты дают оценку риска и могут служить отправной точкой для последующих исследований, в которых, в том числе, будут более полно отражены специфические свойства наночастиц.

  • 1. nanoECO. Nanoparticles in the Environment . Implications and Applications 2–7 March, 2008 Centro Stefano Franscini Monte Verità Ascona, Switzerland
  • 2. H.F. Krug et al., nanoECO Book of Abstracts 2–7 March, 2008, p.53
  • 3. B. Karn. nanoECO Book of Abstracts 2–7 March, 2008, p.77
  • 4. N. Mueller, B. Nowack., Environ. Sci. Technol. 42, 4447 (2008)
  • 5. M. Scheringer, Nature Nanotechnol., 3, 332 (2008)

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

1.Введение.

    Можно предположить, что полное устранение вредного влияния деятельности человек на окружающую среду возможно предотвратить

    Во-первых, за счет насыщения экосферы молекулярными роботами-санитарами, превращающими отходы деятельности человека в исходное сырьё.

    Во-вторых, за счет перевода промышленности и сельского хозяйства на безотходные нанотехнологические методы.

    Проблема экологии занимала человечество с давних времён. А с ростом прогресса, соответственно, загрязнением окружающей среды, проблемы экологии становятся всё более важными. В последнее времяих всё чаще пытаются решить с помощью нанотехнологий.

    Нанотехнология - это область науки и техники, которая занимается совокупностью теоретических и практических методов исследования, анализом и синтезом и методами изготовления и применения продукции, которая имеет заданную атомную структуру. Производство таких продуктов осуществляется контролируемым манипулированием отдельнымимолекулами и атомами. Применение нанотехнологий помогает значительно снизить загрязнение окружающей среды. Методы нанотехнологии применяют в самых разных областях во многих странах мира.

    Однако нанотехнология - новая наука, и, несмотря на свои преимущества и достоинства, вызывает и опасения. Впрочем, у любой ме-дальона всегда две стороны.Поэтому, несмотря на множество явного положитель-ного влияния нанотехнологий на жизнь современных людей, наночастицы могут наносить и вред, используясь в некоторых отраслях. Нанотехнологии в наши дни используются почти во всех сферах современной жизни. Наночастицыиспользуются, например, даже в косметике и парфюмерии. Так, наночастицы оксида титана содержатся внекоторых солнцезащитных кремах. Эти наночастицы поглощают излучение ультрафиолета с большой эффективностью, что, несомненно, делают такие кремы куда более эффективными, чем обычные. Однако впоследствии были проведены исследования, которые показали, что, например, углеродные нанотрубки оказывали губительное воздействие на крыс. Углеродные нанотрубки, попадая в лёгкие крыс, вызывали сильные нарушения, а затем разносились кровью по организму.

    Главная проблема в том, что наночастицы проникают сквозь абсолютно все очистительные фильтры, которые существуют на наш день. Поэтому, так как использование нанотехнологий становится всё более активным, произойдёт и некоторая революция вэкологии. Будут создаваться специальные фильтры, задерживающие наночастицы.

    Так как нанотехнологии видимо облегчают жизнь человека, то можно предположить, что, во-первых, нанотехнологии будут использовать не во всех отраслях, а только в тех, где это необходимо. И, во-вторых, вскоре негативное влияние наночастиц будет изучено и будут придуманы новые методы защиты.

Место нанотехнологий среди отраслей знаний

2.Основная часть

2.1Наноистория

Технологии определяют качество жизни каждого из нас и мощь государства, в котором мы живём.

    400 г до н.э. греческий философ Демокрит впервые использовал слово «атом»;

    1704 год Исаак Ньютон - предположения об исследовании «тайны корпускул»;

    1959 год Ричард Фейман-предположение о механическом перемещении одиночных атомов;

    1974 год Норио Танигучи впервые употребил термин «нанотехнологии»;

    1980 год Эрик Дрекслер использовал этот термин.

2.2Проблемы экологии.

2.2.1Проблема экологии из-за нанотехнологий.

В наше время о перспективах нанотехнологий не говорит разве что ленивый. Всякий, кто заинтересуется данной темой, моментально найдет информацию о фуллеренах и квантовых точках, о нанотрубках, которые в 60 раз прочней стали и выдерживают температуру в 2500 градусов и давление в 6000 атмосфер. О фантастических преимуществах продуктов наноиндустрии написаны десятки аналитических статей. О непредсказуемых опасностях тоже. В силу своих размеров и уникальных свойств наночастицы в выпускаемых продуктах требуют тщательного изучения - могут ли они попадать в тело человека, и если да, то как долго они будут там оставаться. Кроме того, необходимо исследование поведения и перемещений наночастиц в окружающей среде и, самое главное, повлияют ли эти материалы на здоровье человека и состояние природы.

    Другой проблемой является исследование поведения наночастиц в воде. На данный момент этот вопрос разработан слабо. Вопрос сложен тем, что необходимы комплексные исследования по поводу способности каждого из видов грунтов или искусственных фильтров задерживать те или иные наночастицы. Данным вопросом занимаются в настоящее время ученые из Технологического института Джорджии (Georgia Institute of Technology). Ими проводилась серия опытов, в ходе которых через колбы, заполненные песком, грунтом, микрогранулами стекла и иными материалами пропускалась вода, содержащая фуллерены. Выяснилось, что песок задерживает до 80% наночастиц, однако ученые также пришли к выводу, что на фильтрацию влияет состав воды. Наличие в воде гуминовой кислоты или поверхностно-активных веществ позволит наночастицам свободно проходить через песок.

    В целом картина, складывающаяся на основании анализа данных проведенных исследований позволяет придти к выводу, что нанотехнологии не настолько вредны, как можно было бы предположить: наночастицы не отравляют землю и воду, а попадание их в организм не фатально и может быть ограничено системами фильтрации. История экологических и социальных проблем нанотехнологий не нова - подобные идеи возникали ещё и несколько сотен лет назад.

    Не стоит, безусловно считать будущее технологии радужным и безобрачным. Правильное понимание нанопроцессов и побочных эффектов, создание систем фильтрации нового поколения, ограничение недобросовестных производителей и террористов - лишь некоторые пункты из списка задач, которые нам предстоит решать. Однако нам следует понимать, что выгоды от применения нанотехнологий будут перевешивать возможные трудности на пути их внедрения.

    Ученые из университета Пердью (Purdue University) в США пришли к выводу, что наночастицы, попадающие в почву не причинят экосистеме никакого заметного вреда. Был проведен ряд опытов, в которых фуллерены помещали в различные виду почв и затем исследовали их поведение и их влияние на микроорганизмы и минеральные вещества. Напомним нашим читателям, что фуллерены представляют собой каркасные сферические многогранники, составленные из правильных пяти- и шестиугольников с атомами углерода в вершинах. Существенные изменения могли бы стать фатальными для элементов пищевых цепочек растений. Однако результаты наблюдений показывают, что никакой негативной динамики не производит: микроорганизмы живут и здравствуют, баланс веществ не затронут.

Еще одной глобальной проблемой может стать наличие наночастиц в атмосфере. По мнению американских ученых эти частицы, отражая солнечные лучи, способны изменить климат на планете, спровоцировав очередной ледниковый период. Уже сейчас есть сведения об их значительном влиянии на метеоусловия, причем не всегда положительные.Одним из вопросов, которым задаются как ученые, так и обыватели, в особенности жители мегаполисов, является воздух, который мы вдыхаем. Ни для кого не секрет, что наличие гигантского количества заболеваний хроническим бронхитом и астмой, включая врожденные случаи данной болезни, объясняются токсическими и загрязненными выбросами в атмосферу промышленных предприятий и бытовых устройств. Картина мира, в котором, чтобы не умереть от рака легких в 30 лет нужно дышать через фильтр, изображенная Стивеном Кингом в «Бегущем человеке» становится не такой уж фантастикой.

2.2.2Проблема экологии из-за человека.

Последствия проблем экологии из-за человека

Глобальное потепление

    Одной из важнейших экологических проблем выступает длительный рост средней температуры атмосферы нашей планеты. За период 1960-2000 гг. эта величина возросла примерно на 0,5, причем этот рост приобрел особо устойчивый характер в 80-е годы прошлого столетия. Ученые уверены, что основной причиной такого повышения является все возрастающее количество сжигаемого топлива (каменного угля, нефти и т.п.), промышленными установками, автомобилями и т.д. Именно продукты горения (двуокись углерода, метан и т.п.) и их взаимодействие с солнечным излучением являются основными факторами роста температуры атмосфера (парниковый эффект).

    Поэтому уже давно основной проблемой экологии стало снижения уровня потребления, так называемого ископаемого топлива (нефти и угля), что должно уменьшить и объем выбрасываемой в атмосферу окиси углерода и других продуктов горения. Поэтому поиск альтернативных источников энергии и разработка эффективных методов сохранения и передачи энергии (например, создание солнечных батарей и топливных элементов нового типа) стали важной научно - технической задачей. В самое последнее время выяснилось, что применение углеродных нанотрубок может привести к значительному повышению коэффициента полезного действия существующих преобразователей солнечной энергии. Кроме этого, было обнаружено, что углеродные нанотрубки могут весьма эффективно адсорбировать большие количества водорода, что сразу активизировало разнообразные исследования, относящиеся к разработке топливных элементов, батарей и т.п.

Уничтожение озонового слоя.

    Другой важной экологической проблемой является сохранение озонового слоя атмосферы, который расположен примерно на высоте 20 километров и играет исключительно важную роль в защите поверхности планеты от ультрафиолетового излучения Солнца. Известно, что в последние годы озоновый слой разрушается под воздействием многих химических реагентов, используемых в быту и промышленности. Основную роль в процессах разрушения озонового слоя играют фреоны, которые являются не «природными», а искусственными продуктами и производятся химической промышленностью для различных целей (аэрозоли, хладагенты, установки кондиционирования воздуха и т.д.).

    Уменьшение озонового слоя на 1% сразу приводит к повышению частоты заболевания раком кожи на 3-6% и лейкемией - на 1%. Уменьшение озонового слоя на 10% имело бы катастрофические последствия, так как, в соответствии с некоторыми прогнозами, число страдающих раком кожи возросло бы сразу на 20%, а число болеющих лейкемией - на 1,6-1,7 миллиона человек. Вот уже около 10 лет наблюдается заметное разрушение озонового слоя, что ученые связывают с нарастающим выбросом в атмосферу различных фреоновых соединений. Наилучшим решением проблемы стало бы, конечно, полное запрещение использования фреонов, однако это является нереальным, и в наше время интенсивно ведется поиск веществ, которые могли бы заменить фреоны в различных применениях. Нанотехнологии могут дать достаточно эффективные методы решения этой задачи.

Кислотные дожди

Очень серьезной экологической проблемой для многих стран (и особенно, для Японии) являются так называемые кислотные дожди (т. Е. дожди, при которых вместе с водой выпадают серная и соляная кислота). Причиной возникновения таких дождей стало то, что в атмосферу попадает большое количество отходов промышленного производства выхлопных газов автомобилей. Такие отходы могут образовывать в дождевых облаках разнообразные окиси серы и азота (), вступающие в реакцию с водными парами, в результате чего вместо дождя выпадает слабый раствор кислот.

    Для Японии такие кислотные дожди стали проблемой, начиная с конца 90-х годов. По статистике, относящейся к центральным областям Японии, в этот период резко возросло число заболеваний органов дыхания, хотя необходимо отметить, что еще в 1974 году в области Тохоку при кислотных дождях было зафиксировано дополнительно около 30 тысяч пациентов, жаловавшихся на расстройства зрения и заболевания кожи.

    Наиболее радикальным средством борьбы с кислотными дождями стал бы переход к новым источника энергии, не связанным со сжиганием нефти, угля и т.п. Нанотехнологии открывают широкие перспективы для повышения коэффициента полезного действия.

2.2.3Решение экологических проблем с помощью нанотехнологий.

Зеленые нанотехнологии.

    Нанотехнологии способны изменить производственные процессы двумя способами. Во-первых, за счет быстрого сокращения отходов производства и повышения его эффективности. Во-вторых, за счет использования наноматериалов в качестве катализаторов, которые повысят эффективность производственных процессов и позволят избавиться от токсичных и грязных материалов, а также конечных продуктов.

    «Зеленые» нанотехнологии - это технологии, в которых используются безопасные для окружающей среды химические и технологические процессы. В идеале «зеленые» нанотехнологии должны улучшить производственные процессы, предъявляемые к материалам требования, химические процедуры, а также заменить текущие небезопасные вещества и процессы. Это позволит сократить расходы энергии и материалов.

    Значение «зеленой» химии и «зеленых» технологий было оценено по достоинству в 2005 г., когда Нобелевскую премию по химии «За вклад в развитие метода метатезиса в органическом синтезе» вручили Роберту Граббсу (Robert Grubbs) из Калифорнийского технологического института (США), Ричарду Шроку (Richard Schrock) из Массачусетского технологического института (США) и Иву Шовену (Yves Chauvin) из Института нефти (Франция). Метатезис означает такое «переключение» пары химических связей, при котором возникает перегруппировка атомов, то есть изменяется углеродный скелет одной или двух молекул.

«ЗЕЛЁНЫЕ» РЕШЕНИЯ ДЛЯ ГОРОДОВ БУДУЩЕГО

Не существует никаких международных правил «зелёного» строительства. Каждый решает проблему экономии ресурсов и сокращения выбросов парниковых газов по-своему. Журнал National Geographic подобрал десять ярких тому примеров.(3 примера ниже) :

1)Сингапур.

    В Сингапуре существуют уникальные Сады у залива, охватившие 1 млн м². Комплекс создан не только для красоты и отдохновения, но и для обуздания эффекта локального перегрева.

    Центральное место отведено стеклянному атриуму, где находится около 220 тыс. видов растительности (80% растительных видов мира, по уверениям Национального паркового совета Сингапура).

    За его пределами раскинулась роща из 18 «супердеревьев» — вертикальных садов до 50 м в высоту, которые собирают дождевую воду, фильтруют выхлопные газы и перерабатывают солнечную энергию, освещая себя по ночам.

    Эффект локального перегрева возникает в городах из-за того, что тротуар, асфальт и бетон поглощают тепло. По оценке Управления по охране окружающей среды США, среднегодовая температура в миллионнике примерно на 3 ˚С выше, чем в соседних сельских районах. Своего пика эффект достигает в самые жаркие дни лета из-за повального использования кондиционеров.

    Значение растительности в зонах урбанизации выходит за рамки охлаждения и тени. Городские насаждения помогают улучшить качество воздуха и воды благодаря природным механизмам фильтрации. Например, недавнее исследование показало, что травы, плющи и другие растения (не только деревья) способны снизить содержание диоксида азота и твёрдых частиц в воздухе на целых 40 и 60% соответственно.

2) Нью-Йорк

    «Научная баржа», которую можно встретить на реке Гудзон в Нью-Йорке, представляет собой школьный класс и теплицу. Питаемая солнечной энергией, ветром и биотопливом баржа, построенная в 2007 году, может похвастаться нулевым выбросом парниковых газов.Овощи выращивают методом гидропоники, растения получают все необходимые питательные вещества из воды: хорошую почву (и почву вообще) найти в городских условиях нелегко. Для полива используется дождевая вода и очищенная речная, пестициды запрещены. Компания New York Sun Works придумала баржу как прототип самодостаточного садика, который можно разбить на крыше здания.

Первая экологическая деревня Великобритании появилась в Лондоне в 2002 году. Комплекс BedZED состоит из сотен домов и офисных посещений. Сады на крыше, вторичные строительные материалы, эффективная теплоизоляция, ускоренная переработка отходов, очень маленькое расстояние между домом и работой — всё это позволило вдвое снизить углеродный след поселения по сравнению с обычным городом.

Международный совет по нанотехнологиям

    В 2004 г. энтузиастами была учреждена международная организация - Международный совет по нанотехнологиям (International Council on Nanotechnology - ICON), - которая собирает и распространяет всю доступную информацию о нанотехнологиях. Члены этой организации пытаются оценивать преимущества и недостатки нанотехнологий (например риски для окружающей среды) и распространяют информацию об этом.

2.2.4 Химическое нанотехноэкологическое решение проблемы.

Самоочищающиеся поверхность

Такую поверхность называют нанотравой, она представляет собой множество параллельных нанопроволок (наностержней) одинаковой длины, расположенных на равном расстоянии друг от друга.

Самоочищение ворсистой поверхности от частиц грязи называют «эффектом лотоса».

Применение:

Самоочищающиеся поверхности и покрытия

Молекулярные соединения аллотропных форм углерода.

Молекулярные соединения аллотропных форм углерода в виде замкнутых многогранников. Молекула фуллерена состоит из 60 атомов углерода. Диаметр С60 составляет около 1 нм.

Применение:

Огнезащитные краски;

Искусственные алмазы;

Новые лекарства;

Аккумуляторы.

Оксид титана

Оксид титана имеет сильную каталитическую активность. В присутствии ультрафиолетового излучения расщепляет молекулы воды на свободные радикалы.

Применение:

Очистка воды, воздуха, различных поверхностей от органических соединений;

Самоочищающиеся стекла

3.Заключение.

У меня возникла такая идея, как построить очистительные сооружения которые будут очищать воздух во всём мире.

    К примеру приведу здания которые будут построены в центре, рядом с загрязнителями и на окраинах городов, в которых будут установлены специальные конденсаторы и будут выращиваться большое количество растений, которые будут очищать воздух.

Очистительное сооружение

Генератор очистительного сооружения

Примитивный пример генератора и процесс:

Описание работы генератора в очистительном сооружении.

При включении постоянного тока в воде происходит реакция:

Распределение сооружений очистки

    Вполне возможно, что некоторые новые материалы могут представлять риск для изготовителей и потребителей, а также для общества и окружающей среды. Поэтому ученые стремятся максимально тщательно и всесторонне изучить потенциальный риск, связанный с новыми нанотехнологиями, чтобы гарантировать безопасность их применения.

    Развитие нанотехнологий продолжается и вполне возможно, что человечество действительно решит глобальные проблемы с их помощью.

Список использованных источников и литературы.

    https://www.nps.gov/index.htm National Park Service

    http://korrespondent.ru

    http://ria.ru/science/20081203/156376525.html#ixzz2orCoTJVk

    НАНО? Это просто!//РУСНАНО [Электронный ресурс]. - Электрон. журн. - 2012. - Режим доступа:http://popular.rusnano.com/

    Крутько В. Н. Проблема оценки рисков нанотехнологий: методологические аспекты / В. Н. Крутько, Е. В. Пуцилло, А. Я. Чижов // Вестн. Рос. ун-та дружбы народов. Сер. Экология и безопасность жизне-деятельности. - 2014. - № 4. - С. 55-61. - Библиогр.: 5 назв.

    Дугин Г. С. Нанотехнология и ее возможное негативное влияние на окружающую среду / Г.С. Дугин // Проблемы безопасности и чрезвычайных ситуаций. - 2009. - № 5. - С. 33-37. - Библиогр.: 7 назв.

    Галченко Ю. П. Техногенные наночастицы как непериодический фактор окружающей среды / Ю. П. Галченко //Экол. системы и приборы. - 2014. - № 1. - С. 18-22. - Библиогр.: 5 назв.

    Нанотехнология в ближайшем десятилетии / Под ред. М.К. Роко, Р.С. Уильямса, П.Аливисатоса. М., 2012.

    Ибрагимов И. М. Применение нанотехнологии для защиты окружающей среды / И. М. Ибрагимов, Е. А. Перфилова //Изв. Акад. пром. экологии. - 2015. - № 3. - С. 76.

Загрузка...