musings.ru

Какое строение имеет плазматическая мембрана? Како­вы ее функции? Основные функции и особенности строения клеточной мембраны.

Строение клеток живых организмов во многом зависит от того, какие функции они выполняют. Однако существует ряд общих для всех клеток принципов архитектуры. В частности, любая клетка имеет снаружи оболочку, которая называется цитоплазматической или плазматической мембраной. Существует и еще одно название - плазмолемма.

Строение

Плазматическая мембрана состоит из молекул трех основных видов - протеинов, углеводов и липидов. У разных типов клеток соотношение этих компонентов может различаться.

В 1972 году учеными Николсоном и Сингером был предложена жидкостно-мозаичная модель строения цитоплазматической мембраны. Эта модель послужила ответом на вопрос о строении клеточной мембраны и не утратила своей актуальности и по сей день. Суть жидкостно-мозаичной модели заключается в следующем:

  1. Липиды располагаются в два слоя, составляя основу клеточной стенки;
  2. Гидрофильные концы липидных молекул расположены внутрь, а гидрофобные - наружу;
  3. Внутри эта структура имеет слой протеинов, которые пронизывают липиды подобно мозаике;
  4. Кроме белков здесь имеется небольшое количество углеводов - гексоз;

Эта биологическая система отличается большой подвижностью. Белковые молекулы могут выстраиваться, ориентируясь к одной из сторон липидного слоя, или же свободно перемещаются и меняют свое положение.

Функции

Несмотря на некоторые различия в строении, плазмолеммы всех клеток обладают набором общих функций. Кроме того, они могут обладать характеристиками, сугубо специфичными для данного вида клеток. Рассмотрим кратко общие основные функции всех клеточных мембран:

Избирательная проницаемость

Основным свойством плазматической мембраны является избирательная проницаемость. Через нее проходят ионы, аминокислоты, глицерол и жирные кислоты, глюкоза. При этом клеточная мембрана пропускает одни вещества и задерживает другие.

Существует несколько видов механизмов транспорта веществ через клеточную мембрану:

  1. Диффузия;
  2. Осмос;
  3. Экзоцитоз;
  4. Эндоцитоз;

Диффузия и осмос не требуют энергетических затрат и осуществляются пассивно, остальные виды транспорта - это активные процессы, протекающие с потреблением энергии.

Такое свойство клеточной оболочки во время пассивного транспорта обусловлено наличием специальных интегральных белков. Такие белки-каналы пронизывают плазмолемму и образуют в ней проходы. Ионы кальция, калия и лора передвигаются по таким каналам относительно градиента концентрации.

Транспорт веществ

К основным свойствам плазматической мембраны относят также ее способность транспортировать молекулы разнообразных веществ.

Описаны следующие механизмы переноса веществ через плазмолемму:

  1. Пассивный - диффузия и осмос;
  2. Активный;
  3. Транспорт в мембранной упаковке;

Рассмотрим эти механизмы более подробно.

Пассивный

К пассивным видам транспорта относятся осмос и диффузия. Диффузией называется движение частиц по градиенту концентрации. В этом случае клеточная оболочка выполняет функции осмотического барьера. Скорость диффузии зависит от величины молекул и их растворимости в липидах. Диффузия, в свою очередь, может быть нейтральной (с переносом незаряженных частиц) или облегченной, когда задействуются специальные транспортные белки.

Осмосом называется диффузия через клеточную стенку молекул воды .

Полярные молекулы с большой массой транспортируются с помощью специальных белков - этот процесс получил название облегченной диффузии. Транспортные белки пронизывают клеточную мембрану насквозь и образуют каналы. Все транспортные белки подразделяются на каналообразующие и транспортеры. Проникновение заряженных частиц облегчается благодаря существованию мембранного потенциала.

Активный

Перенос веществ через клеточную оболочку против электрохимического градиента называется активным транспортом. Такой транспорт всегда происходит с участием специальных белков и требует энергии. Транспортные белки имеют специальные участки, которые связываются с переносимым веществом. Чем больше таких участков, тем быстрее и интенсивнее происходит перенос. В процессе переноса белок транспортер претерпевает обратимые структурные изменения, что и позволяет ему выполнять свои функции.

В мембранной упаковке

Молекулы органически веществ с большой массой переносятся через мембрану с образованием замкнутых пузырьков - везикул, которые образует мембрана.

Отличительной чертой везикулярного транспорта является то, что переносимые макрочастицы не смешиваются с другим молекулами клетки или ее органеллами.

Перенос крупных молекул внутрь клетки получил название эндоцитоза. В свою очередь, эндоцитоз подразделяется на два вида - пиноцитоз и фагоцитоз. При этом часть плазматической мембраны клетки образует вокруг переносимых частиц пузырек, называемый вакуолью . Размеры вакуолей при пиноцитозе и фагоцитозе имеют существенные различия.

В процессе пиноцитоза происходит поглощение клеткой жидкостей. Фагоцитоз обеспечивает поглощение крупных частиц, обломков клеточных органелл и даже микроорганизмов.

Экзоцитоз

Экзоцитозом принято называть выведение из клетки веществ. В таком случае вакуоли перемещаются к плазмолемме. Далее стенка вакуоли и плазмолемма начинают слипаться, а затем сливаться. Вещества, которые содержатся в вакуоли, перемещаются в окружающую среду.

Клетки некоторых простейших организмов имеют строго определенные участки для обеспечения такого процесса.

Как эндоцитоз, так и экзоцитоз протекают в клетке при участии фибриллярных компонентов цитоплазмы, которые имеют тесную непосредственную связь с плазмолеммой.

Подавляющее большинство организмов, обитающих на Земле, состоит из клеток, во многом сходных по своему химическому составу, строению и жизнедеятельности. В каждой клетке происходит обмен веществ и превращение энергии. Деление клеток лежит в основе процессов роста и размножения организмов. Таким образом, клетка представляет собой единицу строения, развития и размножения организмов.

Клетка может существовать только как целостная система, неделимая на части. Целостность клетки обеспечивают биологические мембраны. Клетка - элемент системы более высокого ранга - организма. Части и органоиды клетки, состоящие из сложных молекул, представляют собой целостные системы более низкого ранга.

Клетка - открытая система, связанная с окружающей средой обменом веществ и энергии. Это функциональная система, в которой каждая молекула выполняет определенные функции. Клетка обладает устойчивостью, способностью к саморегуляции и самовоспроизводству.

Клетка - самоуправляемая система. Управляющая генетическая система клетки представлена сложны ми макромолекулами - нуклеиновыми кислотами (ДНК и РНК).

В 1838-1839 гг. немецкие биологи М. Шлейден и Т. Шванн обобщили знания о клетке и сформулировали основное положение клеточной теории, сущность которой заключается в том, что все организмы, как растительные, так и живот ные, состоят из клеток.

В 1859 г. Р. Вирхов описал процесс деления клетки и сформулировал одно из важнейших положений клеточной теории: "Всякая клетка происходит из другой клетки". Новые клетки образуются в результате деления материнской клетки, а не из неклеточного вещества, как это считалось ранее.

Открытие российским ученым К. Бэром в 1826 г. яйцеклеток млекопитающих привело к выводу, что клетка лежит в основе развития многоклеточных организмов.

Современная клеточная теория включает следующие положения:

1) клетка - единица строения и развития всех организмов;

2) клетки организмов разных царств живой природы сходны по строению, химическому составу, обмену веществ, основным проявлениям жизнедеятельности;

3) новые клетки образуются в результате деления материнской клетки;

4) в многоклеточном организме клетки образуют ткани;

5) из тканей состоят органы.

С введением в биологию современных биологических, физических и химических методов исследования стало возможным изучить структуру и функционирование различных компонентов клетки. Один из методов изучения клетки - микроскопирование . Современный световой микроскоп увеличивает объекты в 3000 раз и позволяет увидеть наиболее крупные органоиды клетки, наблюдать движение цитоплазмы, деление клетки.

Изобретенный в 40-е гг. XX в. электронный микроскоп дает увеличение в десятки и сотни тысяч раз. В электронном микроскопе вместо света используется поток электронов, а вместо линз - электромагнитные поля. Поэтому электронный микроскоп дает четкое изображение при значительно больших увеличениях. При помощи такого микроскопа удалось изучить строение органоидов клетки.

Строение и состав органоидов клетки изучают с помощью метода центрифугирования . Измельченные ткани с разрушенными клеточными оболочками помещают в пробирки и вращают в центрифуге с большой скоростью. Метод основан на том, что различные клеточные ор ганоиды имеют разную массу и плотность. Более плотные органоиды осаждаются в пробирке при низких скоростях центрифугирования, менее плотные - при высоких. Эти слои изучают отдельно.

Широко используют метод культуры клеток и тканей , который состоит в том, что из одной или нескольких клеток на специальной питательной среде можно получить группу однотипных животных или растительных клеток и даже вырас тить целое растение. С помощью это го метода можно получить ответ на вопрос, как из одной клетки образуются разнообразные ткани и органы организма.

Основные положения клеточной теории были впервые сформулированы М. Шлейденом и Т. Шванном. Клетка - единица строения, жизнедеятельности, размножения и развития всех живых организмов. Для изучения клетки используют методы микроскопирования, центрифугирования, культуры клеток и тканей и др.

Клетки грибов, растений и животных имеют много общего не только в химическом составе, но и в строении. При рассматривании клетки под микроскопом в ней видны различные структуры - органоиды . Каждый органоид выполняет определенные функции. В клетке различают три основные части: плазматическую мембрану, ядро и цитоплазму (рис 1).

Плазматическая мембрана отделяет клетку и ее содержимое от окружающей среды. На рисунке 2 вы видите: мембрана образована двумя слоями липидов, а белковые молекулы пронизывают толщу мембраны.

Основная функция плазматической мембраны транспортная . Она обеспечивает поступление питательных веществ в клетку и выведение из нее продуктов обмена.

Важное свойство мембраны - избирательная проницаемость , или полупроницаемость, позволяет клетке взаимодействовать с окружающей средой: в нее поступают и вы водятся из нее лишь определенные вещества. Мелкие молекулы воды и некоторых других веществ проникают в клетку путем диффузии, частично через поры в мембране.

В цитоплазме, клеточном соке вакуолей растительной клетки, растворены сахара, органические кислоты, соли. Причем их концентрация в клетке значительно выше, чем в окружающей среде. Чем больше концентрация этих веществ в клетке, тем больше она поглощает воды. Известно, что вода постоянно расходуется клеткой, благодаря чему концентрация клеточного сока увеличивается и вода снова поступает в клетку.

Поступление более крупных молекул (глюкозы, аминокислот) в клетку обеспечивают транспортные белки мембраны, которые, соединяясь с молекулами транспортируемых веществ, переносят их через мембрану. В этом процессе участвуют ферменты расщепляющие АТФ.

Рисунок 1. Обобщённая схема строения эукариотической клетки.
(для увеличения изображения нажмите на рисунок)

Рисунок 2. Строение плазматической мембраны.
1 - пронзающие белки, 2 - погруженные белки, 3 - внешние белки

Рисунок 3. Схема пиноцитоза и фагоцитоза.

Еще более крупные молекулы белков и полисахаридов проникают в клетку путем фагоцитоза (от греч. фагос - пожирающий и китос - сосуд, клетка), а капли жидкости - путем пиноцитоза (от греч. пино - пью и китос ) (рис 3).

Клетки животных, в отличие от клеток растений, окружены мягкой и гибкой "шубой", образованной преимущественно молекулами полисахаридов, которые, присоединяясь к некоторым белкам и липидам мембраны, окружают клетку снаружи. Состав полисахаридов специфичен для разных тканей, благодаря чему клетки "узнают" друг друга и соединяются между собой.

У клеток растений такой "шубы" нет. У них над плазматической мембраной находится пронизанная порами клеточная оболочка , состоящая преимущественно из целлюлозы. Через поры из клетки в клетку тянутся нити цитоплазмы, соединяющие клетки между собой. Так осуществляется связь между клетками и достигается целостность организма.

Клеточная оболочка у растений играет роль прочного скелета и защищает клетку от повреждения.

Клеточная оболочка есть у большинства бактерий и у всех грибов, только химический состав ее другой. У грибов она состоит из хитиноподобного вещества.

Клетки грибов, растений и животных имеют сходное строение. В клетке различают три основные части: ядро, цитоплазму и плазматическую мембрану. Плазматическая мембрана состоит из липидов и белков. Она обеспечивает поступление веществ в клетку и выделение их из клетки. В клетках растений, грибов и большинства бактерий над плазматической мембраной имеется клеточная оболочка. Она выполняет защитную функцию и играет роль скелета. У растений клеточная оболочка состоит из целлюлозы, а у грибов из хитиноподобного вещества. Клетки животных покрыты полисахаридами, обеспечивающими контакты между клетками одной ткани.

Вам известно, что основную часть клетки составляет цитоплазма . В ее состав входят вода, аминокислоты, белки, углеводы, АТФ, ионы не органических веществ. В цитоплазме расположены ядро и органоиды клетки. В ней вещества перемещаются из одной части клетки в другую. Цитоплазма обеспечивает взаимодействие всех органоидов. Здесь протекают химические реакции.

Вся цитоплазма пронизана тонкими белковыми микротрубочками, образующими цитоскелет клетки , благодаря которому она сохраняет постоянную форму. Цитоскелет клетки гибкий, так как микротрубочки способны изменять свое положение, перемещаться, с одного конца и укорачиваться с другого. В клетку поступают разные вещества. Что же происходит с ними в клетке?

В лизосомах - мелких округлых мембранных пузырьках (см. рис. 1) молекулы сложных органических веществ с помощью гидролитических ферментов расщепляются на более простые молекулы. Например, белки расщепляются на аминокислоты, полисахариды - на моносахариды, жиры - на глицирин и жирные кислоты. За эту функцию лизосомы часто называют "пищеварительными станциями" клетки.

Если разрушить мембрану лизосом, то содержащиеся в них ферменты могут переварить и саму клетку. Поэтому иногда лизосомыназывают "орудиями убийства клетки".

Ферментативное окисление образовавшихся в лизосомах мелких молекул аминокислот, моносахаридов, жирных кислот и спиртов до угле кислого газа и воды начинается в цитоплазме и заканчивается в других органоидах - митохондриях . Митохондрии - палочковидные, нитевидные или шаровидные органоиды, отграниченные от цитоплазмы двумя мембранами (рис. 4). Внешняя мембрана гладкая, а внутренняя образует складки - кристы , которые увеличивают ее поверхность. На внутренней мембране и размещаются ферменты, участвующие в реакциях окисления органических веществ до углекислого газа и воды. При этом освобождается энергия, которая запасается клеткой в молекулах АТФ. Поэтому митохондрии называют "силовыми станциями" клетки.

В клетке органические вещества не только окисляются, но и синтезируются. Синтез липидов и углеводов осуществляется на эндоплазматической сети - ЭПС (рис. 5), а белков - на рибосомах. Что представляет собой ЭПС? Это система канальцев и цистерн, стенки которых образованы мембраной. Они пронизывают всю цитоплазму. По каналам ЭПС вещества перемещаются в разные части клетки.

Существует гладкая и шероховатая ЭПС. На поверхности гладкой ЭПС при участии ферментов синтезируются углеводы и липиды. Шероховатость ЭПС придают расположенные на ней мелкие округлые тельца - рибосомы (см. рис. 1), которые участвуют в синтезе белков.

Синтез органических веществ происходит и в пластидах , которые содержатся только в клетках растений.

Рис. 4. Схема строения митохондрии.
1.- внешняя мембрана; 2.- внутренняя мембрана; 3.- складки внутренней мембраны - кристы.

Рис. 5. Схема строения шероховатой ЭПС.

Рис. 6. Схема строения хлоропласта.
1.- наружная мембрана; 2.- внутрення мембрана; 3.- внутреннее содержимое хлоропласта; 4.- складки внутренней мембраны, собранные в "стопки" и образующие граны.

В бесцветных пластидах - лейкопластах (от греч. леукос - белый и пластос - созданный) накапливается крахмал. Очень богаты лейкопластами клубни картофеля. Желтую, оранжевую, красную окраску плодам и цветкам придают хромопласты (от греч. хрома - цвет и пластос ). В них синтезируются пигменты, участвующие в фотосинтезе, - каротиноиды . В жизни растений особенно велико значение хлоропластов (от греч. хлорос - зеленоватый и пластос ) - зеленых пластид. На рисунке 6 вы видите, что хлоропласты покрыты двумя мембранами: наружной и внутренней. Внутренняя мембрана образует складки; между складками находятся пузырьки, уложенные в стопки, - граны . В гранах имеются молекулы хлорофилла, которые участвуют в фотосинтезе. В каждом хлоропласте около 50 гран, расположенных в шахматном порядке. Такое расположение обеспечивает максимальную освещенность каждой граны.

В цитоплазме белки, липиды, углеводы могут накапливаться в виде зерен, кристаллов, капелек. Эти включения - запасные питательные вещества, которые расходуются клеткой по мере необходимости.

В клетках растений часть запасных питательных веществ, а также продукты распада накапливаются в клеточном соке вакуолей (см. рис. 1). На их долю может приходиться до 90% объема растительной клетки. Животные клетки имеют временные вакуоли, занимающие не более 5% их объема.

Рис. 7. Схема строения комплекса Гольджи.

На рисунке 7 вы видите систему полостей, окруженных мембраной. Это комплекс Гольджи , который выполняет в клетке разнообразные функции: участвует в накоплении и транспортировке веществ, выведении их из клетки, формировании лизосом, клеточной оболочки. Например, в полости комплекса Гольджи поступают молекулы целлюлозы, которые при помощи пузырьков перемещаются на поверхность клетки и включаются в клеточную оболочку.

Большинство клеток размножается путем деления. В этом процессе участвует клеточный центр . Он состоит из двух центриолей, окруженных уплотненной цитоплазмой (см. рис. 1). В начале деления центриоли расходятся к полюсам клетки. От них расходятся белковые нити, которые соединяются с хромосомами и обеспечивают их равно мерное распределение между двумя дочерними клетками.

Все органоиды клетки тесно связаны между собой. Например, в рибосомах синтезируются молекулы белков, по каналам ЭПС они транспортируются к разным частям клетки, а в лизосомах белки разрушаются. Вновь синтезируемые молекулы используются на построение структур клетки или накапливаются в цитоплазме и вакуолях как запасные питательные вещества.

Клетка заполнена цитоплазмой. В цитоплазме располагаются ядро и разнообразные органоиды: лизосомы, митохондрии, пластиды, вакуоли, ЭПС, клеточный центр, комплекс Гольджи. Они различаются по своему строению и функциям. Все органоиды цитоплазмы взаимодействуют между собой, обеспечивая нормальное функционирование клетки.

Таблица 1. СТРОЕНИЕ КЛЕТКИ

ОРГАНЕЛЛЫ СТРОЕНИЕ И СВОЙСТВА ФУНКЦИИ
Оболочка Состоит из целлюлозы. Окружает растительные клетки. Имеет поры Придает клетке прочность, поддерживает определенную форму, защищает. Является скелетом растений
Наружная клеточная мембрана Двумембранная клеточная структура. Состоит из билипидного слоя и мозаично вкрапленных белков, снаружи располагаются углеводы. Обладает полупроницаемостью Ограничивает живое содержимое клеток всех организмов. Обеспечивает избирательную проницаемость, защищает, регулирует водно-солевой баланс, обмен с внешней средой.
Эндоплазматическая сеть (ЭПС) Одномембранная структура. Система канальцев, трубочек, цистерн. Пронизывает всю цитоплазму клетки. Гладкая ЭПС и гранулярная ЭПС с рибосомами Делит клетку на отдельные отсеки, где происходят химические процессы. Обеспечивает сообщение и транспорт вещества в клетке. На гранулярной ЭПС идет синтез белка. На гладкой - синтез липидов
Аппарат Гольджи Одномембранная структура. Система пузырьков, цистерн, в которой находятся продукты синтеза и распада Обеспечивает упаковку и вынос веществ из клетки, образует первичные лизосомы
Лизосомы Одномембранные шарообразные структуры клетки. Содержат гидролитические ферменты Обеспечивают расщепление высокомолекулярных веществ, внутриклеточное переваривание
Рибосомы Немембранные структуры грибовидной формы. Состоят из малой и большой субъединиц Содержатся в ядре, цитоплазме и на гранулярной ЭПС. Участвует в биосинтезе белка.
Митохондрии Двумембранные органеллы продолговатой формы. Наружная мембрана гладкая, внутренняя образует кристы. Заполнена матриксом. Имеются митохондриальные ДНК, РНК, рибосомы. Полуавтономная структура Являются энергетическими станциями клеток. Обеспечивают дыхательный процесс - кислородное окислене органических веществ. Идет синтез АТФ
Пластиды Хлоропласты Характерны для растительных клеток. Двумембранные, полуавтономные органеллы продолговатой формы. Внутри заполнены стромой, в которой располагаются граны. Граны образованы из мембранных структур - тилакоидов. Имеются ДНК, РНК, рибосомы Протекает фотосинтез. На мембранах тилакоидов идут реакции световой фазы, в строме - темновой фазы. Синтез углеводов
Хромопласты Двумембранные органеллы шаровидной формы. Содержат пигменты: красный, оранжевый, желтый. Образуются из хлоропластов Придают окраску цветкам, плодам. Образуются осенью из хлоропластов, придают листьям желтую окраску
Лейкопласты Двумембранные неокрашенные пластиды шарообразной формы. На свету могут переходить в хлоропласты Запасают питательные вещества в виде крахмальных зерен
Клеточный центр Немембранные структуры. Состоят их двух центриолей и центросферы Образует веретено деления клетки, участвуют в делении. После деления клетки удваиваются
Вакуоль Характерна для растительной клетки. Мембранная полость, заполнена клеточным соком Регулирует осмотическое давление клетки. Накапливает питательные вещества и продукты жизнедеятельности клетки
Ядро Главный компонент клетки. Окружено двухслойной пористой ядерной мембраной. Заполнено кариоплазмой. Содержит ДНК в виде хромосом (хроматина) Регулирует все процессы в клетке. Обеспечивает передачу наследственной информации. Число хромосом постоянно для каждого вида. Обеспечивает репликацию ДНК и синтез РНК
Ядрышко Темное образование в ядре, от кариоплазмы не отделено Место образования рибосом
Органеллы движения. Реснички. Жгутики Выросты цитоплазмы, окруженные мембраной Обеспечивают движение клетки, удаление частичек пыли (мерцательный эпителий)

Важнейшая роль в жизнедеятельности и делении клеток грибов, растений и животных принадлежит ядру и находящимся в нем хромосомам. Большинство клеток этих организмов имеет одно ядро, но есть и многоядерные клетки, например мышечные. Ядро расположено в цитоплазме и имеет округлую или овальную форму. Оно покрыто оболочкой, состоящей из двух мембран. Ядерная оболочка имеет поры, через которые происходит обмен веществ между ядром и цитоплазмой. Ядро заполнено ядерным соком, в котором расположены ядрышки и хромосомы.

Ядрышки - это "мастерские по производству" рибосом, которые формируются из образуемых в ядре рибосомных РНК и синтезированных в цитоплазме белков.

Главная функция ядра - хранение и передача наследственной информации - связана с хромосомами . Каждый вид организма имеет свой набор хромосом: определенное их число, форму и размеры.

Все клетки тела, кроме половых, называются соматическими (от греч. сома - тело). Клетки организма одного вида содержат одинаковый набор хромосом. Например, у человека в каждой клетке тела содержится 46 хромосом, у плодовой мухи дрозофилы - 8 хромосом.

Соматические клетки, как правило, имеют двойной набор хромосом. Он называется диплоидным и обозначается 2n . Так, у человека 23 пары хромосом, то есть 2n = 46. В половых клетках содержится в два раза меньше хромосом. Это одинарный, или гаплоидный , набор. У человека 1n = 23.

Все хромосомы в соматических клетках, в отличие от хромосом в половых клетках, парные. Хромосомы, составляющие одну пару, идентичны друг другу. Парные хромосомы называют гомологичными . Хромосомы, которые относятся к разным парам и различаются по форме и размерам, называют негомологичными (рис. 8).

У некоторых видов число хромо сом может совпадать. Например, у клевера красного и гороха посевного 2n = 14. Однако хромосомы у них различаются по форме, размерам, нуклеотидному составу молекул ДНК.

Рис. 8. Набор хромосом в клетках дрозофилы.

Рис. 9. Строение хромосомы.

Чтобы понять роль хромосом в передаче наследственной информации, необходимо познакомиться с их строением и химическим составом.

Хромосомы неделящейся клетки имеют вид длинных тонких нитей. Каждая хромосома перед делением клетки состоит из двух одинаковых нитей - хроматид , которые соединяются между ласти перетяжки - (рис. 9).

Хромосомы состоят из ДНК и белков. Поскольку нуклеотидный состав ДНК различается у разных видов, состав хромосом уникален для каждого вида.

Каждая клетка, кроме бактериальной, имеет ядро, в котором находятся ядрышки и хромосомы. Для каждого вида характерен определенный набор хромосом: число, форма и размеры. В соматических клетках большинства организмов набор хромосом диплоидный, в половых - гаплоидный. Парные хромосомы называют гомологичными. Хромосомы состоят из ДНК и белков. Молекулы ДНК обеспечивают хранение и передачу наследственной информации от клетки к клетке и от организма к организму.

Проработав эти темы, Вы должны уметь:

  1. Рассказать, в каких случаях следует применять световой микроскоп (строение), трансмиссионный электронный микроскоп.
  2. Описать структуру клеточной мембраны и пояснить связь между структурой мембраны и ее способностью осуществлять обмен веществами между клеткой и средой.
  3. Дать определение процессам: диффузия, облегченная диффузия, активный транспорт, эндоцитоз, экзоцитоз и осмос. Указать различия между этими процессами.
  4. Назвать функции структур и указать, в каких клетках (растительных, животных или прокариотических) они находятся: ядро, ядерная мембрана, нуклеоплазма, хромосомы, плазматическая мембрана, рибосома, митохондрия, клеточная стенка, хлоропласт, вакуоль, лизосома, эндоплазматическая сеть гладкая (агранулярная) и шероховатая (гранулярная), клеточный центр, аппарат Гольджи, ресничка, жгутик, мезосома, пили или фимбрии.
  5. Назвать не менее трех признаков, по которым можно отличить растительную клетку от животной.
  6. Перечислить важнейшие различия между прокариотической и эукариотической клеткой.

Иванова Т.В., Калинова Г.С., Мягкова А.Н. "Общая биология". Москва, "Просвещение", 2000

  • Тема 1. "Плазматическая мембрана." §1, §8 стр. 5;20
  • Тема 2. "Клетка." §8-10 стр. 20-30
  • Тема 3. "Прокариотическая клетка. Вирусы." §11 стр. 31-34

Плазматическая мембрана занимает особое положение, так как ограничивает клетку снаружи и непосредственно связана с внеклеточной средой. Она имеет толщину около 10 нм и представляет собой самую толстую из клеточных мембран. Основными компонентами являются белки (более 60%), липиды (около 40%) и углеводы (около 1%). Как и все остальные мембраны клетки синтезируется в каналах ЭПС.

Функции плазмалеммы.

Транспортная.

Плазматическая мембрана является полупроницаемой, т.е. через нее с различной скоростью проходят избирательно разные молекулы. Существует два способа переноса веществ через мембрану: пассивный и активный транспорт .

Пассивный транспорт. Пассивный транспорт или диффузия не требует затрат энергии. Незаряженные молекулы диффундируют по градиенту концентрации, транспорт заряженных молекул зависит от градиента концентрации протонов водорода и трансмембранной разности потенциалов, которые объединяются в электрохимический протонный градиент. Как правило, внутренняя цитоплазматическая поверхность мембраны несет отрицательный заряд, что облегчает проникновение в клетку положительно заряженных ионов. Различают два типа диффузии: простую и облегченную.

Простая диффузия характерна для небольших нейтральных молекул (Н 2 О, СО 2 , О 2), а также для гидрофобных низкомолекулярных органических веществ. Эти молекулы могут проходить без какого-либо взаимодействия с мембранными белками через поры или каналы мембраны до тех пор, пока будет сохраняться градиент концентрации.

Облегченная диффузия характерна для гидрофильных молекул, которые переносятся через мембрану также по градиенту концентрации, но с помощью специальных мембранных белков-переносчиков по принципу унипорта .

Облегченная диффузия отличается высокой избирательностью, так как белок-переносчик имеет центр связывания, комплементарный транспортируемому веществу, и перенос сопровождается конформационными изменениями белка. Один из возможных механизмов облегченной диффузии следующий: транспортный белок (транслоказа) связывает вещество, затем сближается с противоположной стороной мембраны, освобождает это вещество, принимает исходную конформацию и вновь готов выполнять транспортную функцию. Мало известно о том, как осуществляется передвижение самого белка. Другой возможный механизм переноса предполагает участие нескольких белков-переносчиков. В этом случае первоначально связанное соединение само переходит от одного белка к другому, последовательно связываясь то с одним, то с другим белком, пока не окажется на противоположной стороне мембраны.

Активный транспорт. Такой транспорт имеет место в случае, когда перенос осуществляется против градиента концентрации. Он требует затраты энергии клеткой. Активный транспорт служит для накопления веществ внутри клетки. Источником энергии часто является АТФ. Для активного транспорта, кроме источника энергии, необходимо участие мембранных белков. Одна из активных транспортных систем в клетке животных отвечает за перенос ионов Na и К + через клеточную мембрану. Эта система называется Na + - К*-насос. Она отвечает за поддержание состава внутриклеточной среды, в которой концентрация ионов К + выше, чем ионов Na*.

Градиент концентрации обоих ионов поддерживается путем переноса К + внутрь клетки, a Na + наружу. Оба транспорта происходят против градиента концентрации. Такое распределение ионов определяет содержание воды в клетках, возбудимость нервных клеток и клеток мышц и другие свойства нормальных клеток. Na + -К + -насос представляет собой белок - транспортную АТФазу. Молекула этого фермента является олигомером и пронизывает мембрану. За полный цикл работы насоса из клетки в межклеточное вещество переносится 3 иона Na + , а в обратном направлении - 2 иона К + , при этом используется энергия молекулы АТФ. Существуют транспортные системы для переноса ионов кальция (Са 2+ -АТФазы), протонные насосы (Н + -АТФазы) и др.

Активный перенос вещества через мембрану, осуществляемый за счет энергии градиента концентрации другого вещества называется симпортом . Транспортная АТФаза в этом случае имеет центры связывания для обоих веществ. Антипорт - это перемещение вещества против градиента своей концентрации. При этом другое вещество движется в противоположном направлении по градиенту своей концентрации. Симпорт и антипорт (котранспорт) могут происходить при всасывании аминокислот из кишечника и реабсорбции глюкозы из первичной мочи, при этом используется энергия градиента концентрации ионов Na + , создаваемого Na + , K + -АТФазой.

Еще 2 разновидности транспорта - эндоцитоз и экзоцитоз.

Эндоцитоз - захват клеткой крупных частиц. Существует несколько способов зндоцитоза: пиноцитоз и фагоцитоз. Обычно под пиноцитозом понимают захват клеткой жидких коллоидных частиц, под фагоцитозом - захват корпускул (более плотных и крупных частиц вплоть до других клеток). Механизм пино- и фагоцитоза различен.

В общем виде поступление в клетку твердых частиц или капель жидкости извне называется гетерофагией. Этот процесс наиболее широко распространен у простейших, но очень важен и у человека (равно как и у других млекопитающих). Гетерофагия играет существенную роль в защите организма (сегментоядерные нейтрофилы - гранулоциты; макрофагоциты), перестройке костной ткани (остеокласты), образовании тироксина фолликулами щитовидной железы, реабсорбции белка и других макромолекул в проксимальном отделе нефрона и других процессах.

Пиноцитоз.

Для того чтобы внешние молекулы поступили в клетку, должны быть сначала связаны рецепторами гликокаликса (совокупность молекул, связанных с поверхностными белками мембраны) (рис.).

В месте такого связывания под плазмалеммой обнаруживаются молекулы белка клатрина. Плазмалемма вместе с присоединенными извне молекулами и подстилаемая со стороны цитоплазмы клатрином начинает впячиваться. Впячивание становится все глубже, его края сближаются и затем смыкаются. В результате от плазмалеммы отщепляется пузырек, несущий в себе захваченные молекулы. Клатрин на его поверхности выглядит на электронных мнкрофотографиях как неровная каемка, поэтому такие пузырьки получили название окаймленных.

Клатрин не дает возможности пузырькам присоединятся к внутриклеточным мембранам. Поэтому окаймленные пузырьки могут беспрепятственно транспортироваться в клетке именно к тем участкам цитоплазмы, где должно использоваться их содержимое. Так к ядру доставляются, в частности, стероидные гормоны. Однако обычно окаймленные пузырьки сбрасывают кайму вскоре после отщепления от плазмалеммы. Клатрин переносится к плазмалемме и снова может участвовать в реакциях эндоцитоза.

У поверхности клетки в цитоплазме имеются более постоянные пузырьки - эндосомы. Окаймленные пузырьки сбрасывают клатрин и сливаются с эндосомами, при этом объем и поверхность эндосом увеличивается. Затем избыточная часть эндосом отщепляется в виде нового пузырька, в котором нет поступивших в клетку веществ, они остаются в эндосоме. Новый пузырек направляется к поверхности клетки и сливается с мембраной. В результате убыль плазмалеммы, возникшая при отщеплении окаймленного пузырька, восстанавливается, при этом в плазмалемму возвращаются и ее рецепторы.

Эндосомы погружаются в цитоплазму и сливаются с мембранами лизосомы. Поступившие вещества внутри такой вторичной лизосомы подвергаются различным биохимическим превращениям. По завершении процесса мембрана лизосомы может распадаться на фрагменты, а продукты распада и содержимого лизосомы становятся доступными для внутриклеточных метаболических реакций. Так, например, аминокислоты связываются тРНК и доставляются к рибосомам, а глюкоза может поступать в комплекс Гольджи, либо в канальцы агранулярной ЭПС.

Хотя эндосомы и не обладают клатриновой каймой, не все они сливаются с лизосомами. Часть из них направляется от одной поверхности клетки к другой (если клетки образуют эпителиальный пласт). Там мембрана эндосомы сливается с плазмолеммой и содержимое выводится вовне. В результате вещества переносятся через клетку из одной среды в другую без изменений. Этот процесс называют трансцитозом . Путем трансцитоза могут переноситься и белковые молекулы, в частности иммуноглобулины.

Фагоцитоз.

Если крупная частица имеет на поверхности молекулярные группировки, которые могут распознаваться рецепторами клетки, она связывается. Далеко не всегда чужеродные частицы сами обладают такими группировками. Однако, попадая в организм, они окружаются молекулами иммуноглобулинов (опсонинами), которые всегда содержатся и в крови, и в межклеточной среде. Иммуноглобулины всегда распознаются клетками-фагоцитами.

После того как покрывающие чужеродную частицу опсонины связались с рецепторами фагоцита, активируется его поверхностный комплекс. Актиновые микрофиламенты начинают взаимодействовать с миозином, и конфигурация поверхности клетки изменяется. Вокруг частицы вытягиются выросты цитоплазмы фагоцита. Они охватывают поверхность частицы и объединяются над ней. Наружные листки выростов сливаются, замыкая поверхность клетки.

Глубокие листки выростов образуют мембрану вокруг поглощенной частицы - формируется фагосома. Фагосома сливается с лизосомами, в результате чего возникает их комплекс - гетеролизосома (гетеросома, или фаголизосома). В ней происходит лизис захваченных компонентов частицы. Часть продуктов лизиса выводится из гетеросомы и утилизируется клеткой, часть же может оказаться не поддающейся действию лизосомных ферментов. Эти остатки образуют остаточные тельца.

Потенциально все клетки обладают способностью к фагоцитозу, но в организме лишь некоторые специализируются в этом направлении. Таковы нейтрофильные лейкоциты и макрофаги.

Экзоцитоз.

Это выведение веществ из клетки. Сначала крупномолекулярные соединения сегрегируются в комплексе Голъджи в виде транспортных пузырьков. Последние с участием микротрубочек направляются к клеточной поверхности. Мембрана пузырька встраивается в плазмалемму, и содержимое пузырька оказывается за пределами клетки (рис.) Слияние пузырька с плазмалеммой может совершать без каких-либо дополнительных сигналов. Такой экзоцитоз называют конститутивным. Так выводится из клетгсд большинство продуктов ее собственного метаболизма. Ряд клеток, однако, предназначен для синтеза специальных соединений - секретов, которые используются в организме в других его частях. Для того чтобы транспортный пузырек с секретом слился с плазмалеммои, необходимы сигналы извне. Только тогда произойдет слияние и секрет освободится. Такой экзоцитоз называют регулируемым . Сигнальные молекулы, способствующие выведению секретов, называются либеринами (рилизинг-факторами), а препятствующие выведению - статинами.

Рецепторные функции.

В основном обеспечиваются гликопротеинами, расположенными на поверхности плазмалеммы и способными связываться со своими лигандами. Лиганд соответствует своему рецептору как ключ - замку. Связывание лиганда с рецептором вызывает изменение конформации полипептида. При таком изменении трансмембранного белка устанавливается сообщение между вне- и внутриклеточной средой.

Типы рецепторов.

Рецепторы, связанные с белковыми ионными каналами. Они взаимодействуют с сигнальной молекулой, временно открывающей или закрывающей канал для прохождения ионов. (Например, рецептор нейромедиатора ацетилхолина - белок, состоящий из 5 субъединиц, образующих ионный канал. В отсутствии ацетилхолина канал закрыт, а после присоединения открывается и пропускает ионы натрия).

Каталитические рецепторы. Состоят из внеклеточной части (собственно рецептор) и внутриклеточной цитоплазматической части, которая функционирует как фермент пролинкиназа (например, рецепторы гормона роста).

Рецепторы, связанные с G-белками. Это трансмембранные белки, состоящие из рецептора, взаимодействующего с лигандом, и G-белка (гуанозинтрифосфат-связанного регуляторного белка), который передает сигнал на связанный с мембраной фермент (аденилатциклазу) или на ионный канал. В результате активируется циклический АМФ или ионы кальция. (Так работает аденилатциклазная система. Например, в клетках печени находится рецептор гормона инсулина. Надклеточная часть рецептора связывается с инсулином. Это вызывает активацию внутриклеточной части - фермента аденилатциклазы. Она синтезирует из АТФ циклический АМФ, регулирующий скорость различных внутриклеточных процессов, вызывая активацию или ингибирование тех или иных ферментов метаболизма).

Рецепторы, воспринимающие физические факторы. Например, фоторецепторный белок родопсин. При поглощении света он меняет свою конформацию и возбуждает нервный импульс.

Клеточная мембрана представляет собой двойной слой молекул (бислой) фосфолипидов со вставками свободно расположенных белковых молекул. Толщина наружной клеточной мембраны чаще всего составляет 6—12 нм.
Свойства мембраны : образование компартмента (замкнутого пространства), избирательная проницаемость, асимметричность строения, текучесть.
Функции мембраны :
. транспорт веществ в клетку и из клетки, газообмен;
. рецепторная; контакты между клетками в многоклеточном организме (одномембранные структуры, наружная
мембрана в митохондриях, наружная и внутренняя мембрана ядра);
. граница между наружной и внутренней средой клетки;
. модифицированные складки мембраны образуют многие органеллы клетки (мезосома).
Основа мембран — липидный бислой (см. рис. 1). Липидные молекулы имеют двойственную природу, проявляющуюся в том, как они ведут себя по отношению к воде. Липиды состоят из полярной (т.е. гидрофильной, обладает сродством к воде) головы и двух неполярных (гидрофобных) хвостов. Все молекулы ориентированы одинаково: головы молекул — в воде, а углеводородные хвосты — над ее поверхностью.


Рис. 1. Строение плазматической мембраны
Белковые молекулы как бы «растворены» в липидном бислое мембраны. Они могут находиться только на наружной или только на внутренней поверхности мембраны или лишь частично погружены в липидный бислой.
Функции белков в мембранах :
. дифференцировка клеток в ткани (гликопротеины);
. транспорт крупных молекул (поры и каналы, насосы);
. способствование восстановлению повреждений мембраны, доставляя фосфолипиды;
. катализ реакций, происходящих на мембранах;
. взаимная связь внутренних частей клетки с окружающим пространством;
. поддержание структуры мембран;
. получение и преобразование химических сигналов из окружающей среды (рецепторы).

Транспорт веществ через мембрану

В зависимости от необходимости использования энергии для осуществления транспорта веществ различают пассивный транспорт, который идет без расходования АТФ, и активный транспорт, в ходе которого расходуется АТФ.
В основе пассивного транспорта лежит разность концентраций и зарядов. При этом вещества перемещаются из области с более высокой концентрацией в область с более низкой, т.е. по градиенту концентрации. Если молекула заряжена, то на ее транспорт влияет и электрический градиент. Скорость транспорта зависит от величины градиента. Способы пассивного транспорта через мембрану:
. простая диффузия — непосредственно через липидный слой (газы, неполярные или малые незаряженные полярные молекулы). Диффузия воды через мембраны — осмос;
. диффузия через мембранные каналы — транспорт заряженных молекул и ионов;
. облегченная диффузия — транспорт веществ с помощью специальных транспортных белков (сахара, аминокислоты, нуклеотиды).
Активный транспорт происходит против электрохимического градиента с помощью белков — переносчиков. Одна из таких систем называется натрий-калиевый насос, или натрийкалиевая АТФаза (рис. 8). Этот белок замечателен тем, что на него тратится колоссальное количество АТФ — примерно треть АТФ, синтезируемой в клетке. Это белок, который переносит через мембрану внутрь ионы калия, а наружу — ионы натрия. В результате получается, что натрий накапливается снаружи клеток.


Рис. 8. Калийнатриевый насос
Фазы работы насоса:
. с внутренней стороны мембраны к белку-насосу поступают ионы натрия и молекула АТФ, а с наружной — ионы калия;
. ионы натрия соединяются с молекулой белка и белок приобретает АТФ-азную активность, т.е. способность вызывать гидролиз АТФ, сопровождающийся освобождением энергии, приводящей в движение насос;
. фосфат, освободившийся при гидролизе АТФ, присоединяется к белку;
. конформационные изменения белка, он оказывается неспособным удерживать ионы натрия, и они высвобождаются и выходят за пределы клетки;
. белок присоединяет ионы калия;
. фосфат от белка отщепляется и конформация белка вновь изменяется;
. высвобождение ионов калия внутрь клетки;
. белок возобновляет способность присоединять ионы натрия.
За один цикл работы насос выкачивает из клетки 3 ионы натрия и закачивается 2 иона калия. Снаружи накапливается положительный заряд. При этом внутри клетки заряд отрицательный. В результате любой положительный ион может быть перенесен через мембрану сравнительно легко просто за счет того, что есть разность зарядов. Так, через натрий-зависимый белок для транспорта глюкозы присоединяет ион натрия и молекулу глюкозы снаружи, а дальше за счет того, что ион натрия притягивается внутрь, белок с легкостью переносит и натрий и глюкозу внутрь. На этом же принципе основано то, что нервные клетки имеют такое же распределение зарядов, и это позволят пропустить внутрь натрий и очень быстро создать изменение заряда, называемое нервным импульсом.
Крупные молекулы поступают через мембрану в ходе эндоцитоза. При этом мембрана образует впячивание, края ее сливаются, и происходит отшнуровывание в цитоплазму везикул — одномембранных мешочков. Различают два типа эндоцитоза: фагоцитоз (поглощение крупных твердых частиц) и пыноцитоз (поглощение растворов).
Экзоцитоз — процесс выведения различных веществ из клетки. При этом везикулы сливаются с плазматической мембраной, и их содержимое выводится за пределы клетки.

Лекция, реферат. Строение и функции плазматической мембраны. Транспорт веществ через мембрану - понятие и виды. Классификация, сущность и особенности.

Лекция № 4.

Количество часов: 2

Плазматическая мембрана

1.

2.

3. Межклеточные контакты.

1. Строение плазматической мембраны

Плазматическая мембрана, или плазмалемма, представляет собой поверхностную периферическую структуру, ограничивающую клетку снаружи и обеспечивающую ее связь с другими клетками и внеклеточной средой. Она имеет толщину около 10 нм. Среди других клеточных мембран плазмалемма является самой толстой. В химическом отношении плазматическая мембрана представляет собой липопротеиновый комплекс. Основными компонентами являются липиды (около 40%), белки (более 60%) и углеводы (около 2-10%).

К липидам относится большая группа органических веществ, обладающих плохой растворимостью в воде (гидрофобность) и хорошей растворимостью в органических растворителях и жирах (липофильность). Характерными представителями липидов, встречающимися в плазматической мембране, являются фосфолипиды, сфингомиелины и холестерин. В растительных клетках холестерин замещается фитостерином. По биологической роли белки плазмалеммы можно разделить на белки-ферменты, рецепторные и структурные белки. Углеводы плазмалеммы входят в состав плазмалеммы в связанном состоянии (гликолипиды и гликопротеины).

В настоящее время общепринятой является жидкостно-мозаичная модель строения биологической мембраны. Согласно этой модели структурную основу мембраны образует двойной слой фосфолипидов, инкрустированный белками. Хвосты молекул обращены в двойном слое друг к другу, а полярные головки остаются снаружи, образуя гидрофильные поверхности. Молекулы белков не образуют сплошного слоя, они располагаются в слое липидов, погружаясь на разную глубину (есть периферические белки, часть белков пронизывает мембрану насквозь, часть погружена в слой липидов). Большинство белков не связаны с липидами мембраны, т.е. они как бы плавают в «липидном озере». Поэтому молекулы белков способны перемещаться вдоль мембраны, собираться в группы или, наоборот, рассеиваться на поверхности мембраны. Это говорит о том, что плазматическая мембрана не является статичным, застывшим образованием.

Снаружи от плазмолеммы располагается надмембранный слой - гликокаликс. Толщина этого слоя составляет около 3-4 нм. Гликокаликс обнаружен практически у всех животных клеток. Он представляет собой связанный с плазмолеммой гликопротеиновый комплекс. Углеводы образуют длинные, ветвящиеся цепочки полисахаридов, связанные с белками и липидами плазматической мембраны. В гликокаликсе могут располагаться белки-ферменты, участвующие во внеклеточном расщеплении различных веществ. Продукты ферментативной активности (аминокислоты, нуклеотиды, жирные кислоты и др.) транспортируются через плазматическую мембрану и усваиваются клетками.

Плазматическая мембрана постоянно обновляется. Это происходит путем отшнуровывания мелких пузырьков с ее поверхности внутрь клетки и встраивания в мембрану вакуолей, поступивших изнутри клетки. Таким образом, в клетке постоянно происходит поток мембранных элементов: от плазматической мембраны внутрь цитоплазмы (эндоцитоз) и поток мембранных структур из цитоплазмы к поверхности клетки (экзоцитоз). В круговороте мембран ведущая роль отводится системе мембранных вакуолей комплекса Гольджи.

4. Функции плазматической мембраны. Механизмы транспорта веществ через плазмолемму. Рецепторная функция плазмалеммы

Плазматическая мембрана выполняет ряд важнейших функций:

1) Барьерная. Барьерная функция плазматической мембраны заключается в ог­ раничении свободной диффузии веществ из клетки в клетку, предот­ вращении утечки водорастворимого содержимого клетки. Но посколь­ ку клетка должна получать необходимые питательные вещества, вы­ делять конечные продукты метаболизма, регулировать внутриклеточ­ ные концентрации ионов, то в ней образовались специальные меха­низмы переноса веществ через клеточную мембрану.

2) Транспортная. К транспортной функции относится обеспечение поступления и выведения различных веществ в клетку и из клетки. Важное свойство мембраны - избирательная проницаемость , или полупроницаемость. Она легко пропускает воду и водораствори­ мые газы и отталкивает полярные молекулы, такие как глюкоза или аминокислоты.

Существует несколько механизмов транспорта веществ через мем­брану:

пассивный транспорт;

активный транспорт;

транспорт в мембранной упаковке.

Пассивный транспорт. Диффузия - это движение частиц среды, приводящее к переносу ве­ щества из зоны, где его концентрация высока в зону с низкой концентра­ цией. При диффузионном транспорте мембрана функционирует как осмотический барьер. Скорость диффузии зависит от величины молекул и их относительной растворимости в жирах. Чем меньше раз­ меры молекул и чем более они жирорастворимы (липофильны), тем быстрее произойдет их перемещение через липидный бислой. Диффузия может быть нейтральной (перенос незаряженных молекул) и облегченной (с помощью специальных белков пере­ носчиков). Скорость облегченной диффузии выше, чем нейтральной. Максимальной проникающей способностью обладает вода, так как ее молекулы малы и незаряже­ны. Диффузия воды через клеточ­ ную мембрану называется осмо­ сом. Предполагается, что в клеточ­ ной мембране для проникновения воды и некоторых ионов существу­ ют специальные "поры". Число их невелико, а диаметр составляет около 0,3-0,8 нм. Наиболее быст­ро диффундируют через мембра­ну легко растворимые в липидном бислое молекулы, например О, и незаряженные полярные молеку­ лы небольшого диаметра (СО, мо­ чевина).

Перенос полярных молекул (с ахаров, аминокислот), осуще­ ствляемый с помощью специальных мембранных транспортных белков называется облегченной диффузией. Такие белки обна­ ружены во всех типах биологических мембран, и каждый конкрет­ный белок предназначен для переноса молекул определенного клас­ са. Транспортные белки являются трансмембранными, их полипеп­тидная цепь пересекает липидный бислой несколько раз, формируя в нем сквозные проходы. Это обеспечивает перенос специфичес­ ких веществ через мембрану без непосредственного контакта с ней. Существует два основных класса транспортных белков: белки- переносчики (транспортеры) и каналообразующие белки (бел­ ки-каналы). Белки-переносчики переносят молекулы через мембра­ну, предварительно изменяя их конфигурацию. Каналообразующие белки формируют в мембране заполненные водой поры. Когда поры открыты, молекулы специфических веществ (обычно неорганические ионы подходящего размера и заряда) про­ходят сквозь них. Если молекула транспортируемого вещества не имеет заряда, то направление транспорта определяется градиентом концентрации. Если молекула заряжена, то на ее транспорт, кроме градиента кон­центрации, влияет и электрический заряд мембраны (мембранный потенциал). Внутренняя сторона плазмалеммы обычно заряжена от­ рицательно по отношению к наружной. Мембранный потенциал об­легчает проникновение в клетку положительно заряженных ионов и препятствует прохождению ионов заряженных отрицательно.

Активный транспорт. Активным транспортом называется перенос веществ против элек­трохимического градиента. Он всегда осуществляется белками-транс портерами и тесно свя­зан с источником энер гии. В белках-перенос­ чиках имеются участки связывания с транспор­ тируемым веществом. Чем больше таких учас­тков связывается с веще­ ством, тем выше ско­ рость транспорта. Селективный перенос одного вещества называется унипортом. Перенос нескольких веществ осуществляют котран спортные системы. Если перенос идет в одном направлении - это симпорт, если в противоположных – антипорт. Так, например, глюкоза из внеклеточной жидкости в клетку переносится унипортно. Перенос же глюкозы и Na 4 из полости кишечника или канальцев почек соответственно в клетки кишечника или кровь осу­ществляется симпортно, а перенос С1~ и НСО" антипортно. Предпо­лагается, что при переносе возникают обратимые конформационные изменения в транспортере, что и позволяет премещать соединенные с ним вещества.

Примером белка-переносчика, использующего для транспорта веществ энергию выделившуюся при гидролизе АТФ, является Na + -К + насос, обнаруженный в плазматической мембране всех клеток. Na + - K насос работает по принципу антипорта, перекачи­ вая Na " из клетки и К т внутрь клетки против их электрохимических градиентов. Градиент Na + создает осмотическое давление, поддер­живает клеточный объем и обеспечивает транспорт сахаров и ами­ нокислот. На работу этого насоса тратится треть всей энергии не­обходимой для жизнедеятельности клеток. При изучении механизма действия Na + - K + насоса было установ­ лено, что он является ферментом АТФазой и трансмембранным ин­тегральным белком. В присутствии Na + и АТФ под действием АТФа- зы от АТФ отделяется концевой фосфат и присоединяется к остатку аспарагиновой кислоты на молекуле АТФазы. Молекула АТФазы фос форилируется, изменяет свою конфигурацию и Na + выводится из клетки. Вслед за выведением Na из клетки всегда происходит транс­порт К" в клетку. Для этого от АТФазы в присутствии К отщепляется ранее присоединенный фосфат. Фермент дефосфорилируется, восста­навливает свою конфигурацию и К 1 "закачивается" в клетку.

АТФаза образована двумя субъединицами, большой и малой. Большая субъединица состоит из тысячи аминокислотных остатков, пересекающих бислой несколько раз. Она обладает каталитической активностью и способна обратимо фосфорилироваться и дефосфо рилироваться. Большая субъединица на цитоплазматической сторо­ не имеет участки для связывания Na + и АТФ, а на внешней стороне - участки для связывания К + и уабаина. Малая субъединица является гликопротеином и функция его пока не известна.

Na + - K насос обладает электрогенным эффектом. Он удаляет три положительно заряженных иона Na f из клетки и вносит в нее два иона К В результате через мембрану течет ток, образующий элект­ рический потенциал с отрицательным значением во внутренней час­ти клетки по отношению к ее наружной поверхности. Na "- K + насос регулирует клеточный объем, контролирует концентрацию веществ внутри клетки, поддерживает осмотическое давление, участвует в создании мембранного потенциала.

Транспорт в мембранной упаковке. Перенос через мембрану макромолекул (белков, нуклеиновых кис­ лот, полисахаридов, липопротеидов) и других частиц осуществляет­ся посредством последовательного образования и слияния окружен­ ных мембраной пузырьков (везикул). Процесс везикулярного транспор­ та проходит в две стадии. Вначале мембрана пузырька и плазмалемма слипаются, а затем сливаются. Для протекания 2 стадии необхо­ димо чтобы молекулы воды были вы­ теснены взаимодействующими липидными бислоями, которые сближаются до расстояния 1-5 нм. Считает­ ся, что данный процесс активизируют специальные белки слияния (они выделены пока только у вирусов). Везикулярный транспорт имеет важную особенность - поглощенные или секретируемые макромолекулы, находящиеся в пузырьках, обычно не смешиваются с другими макромоле­ кулами или органеллами клетки. Пу­ зырьки могут сливаться со специфи­ческими мембранами, что и обеспе­ чивает обмен макромолекулами меж­ ду внеклеточным пространством и содержимым клетки. Аналогично происходит перенос макромолекул из одного компартмента клетки в другой.

Транспорт макромолекул и частиц в клетку называется эндо цитозом. При этом транспортируемые вещества обволакиваются ча­ стью плазматической мембраны, образуется пузырек (вакуоль), ко­ торый перемещается внутрь клетки. В зависимости от размера обра­ зующихся пузырьков различают два вида эндоцитоза - пиноцитоз и фагоцитоз.

Пиноцитоз обеспечивает поглощение жидкости и растворенных веществ в виде небольших пузырьков (d =150 нм). Фагоцитоз - это поглощение больших частиц, микрооргани зов или обломков органелл, клеток. При этом образуют­ ся крупные пузырьки, фагосомы или вакуоли (d -250 нм и более). У простейших фагоцитарная функция - форма питания. У млекопита­ющих фагоцитарная функция осуществляется макрофагами и нейт рофилами, защищающими организм от инфекции путем поглоще­ния вторгшихся микробов. Макрофаги участвуют также в утилиза­ ции старых или поврежденных клеток и их обломков (в организме человека макрофаги ежедневно поглощают более 100 старых эрит­ роцитов). Фагоцитоз начинается только тогда, когда поглощаемая частица свяжется с поверхностью фагоцита и активирует специализирован­ ные рецепторные клетки. Связывание частиц со специфическими ре­ цепторами мембраны вызывает образование псевдоподии, кото­ рые обволакивают частицу и, сливаясь краями, образуют пузырек - фагосому. Образование фагосомы и собственно фагоцитоз проис­ ходит лишь в том случае, если в процессе обволакивания частица постоянно контактирует с рецепторами плазмалеммы, как бы "засте­ гивая молнию".

Значительная часть материала, поглощенного клеткой путем эн­ доцитоза, заканчивает свой путь в лизосомах. Большие частицы вклю­ чаются в фагосомы, которые затем сливаются с лизосомами и обра­зуют фаголизосомы. Жидкость и макромолекулы, поглощенные при пиноцитозе, первоначально переносятся в эндосомы, которые так­ же сливаются с лизосомами, образуя эндолизосомы. Присутствую­щие в лизосомах разнообразные гидролитические ферменты быст­ ро разрушают макромолекулы. Продукты гидролиза (аминокис­ лоты, сахара, нуклеотиды) транспортируются из лизосом в цитозоль, где используются клеткой. Большинство мембранных компонентов эндоцитозных пузырьков из фагосом и эндосом возвращаются с по­мощью экзоцитоза к плазматической мембране и там повторно ути­ лизируются. Основным биологическим значением эндоцитоза явля­ ется получение строительных блоков за счет внутриклеточного пе­реваривания макромолекул в лизосомах.

Поглощение веществ в эукариотических клетках начинается в спе­ циализированных областях плазматической мембраны, так называе­ мых окаймленных ямках. На электронных микрофотографиях ямки выглядят как впячивания плазматической мембраны, цитоплаз матическая сторона которых покрыта волокнистым слоем. Слой как бы окаймляет небольшие ямки плаз малеммы. Ямки занимают около 2% об­ щей поверхности клеточной мебра ны эукариотов. В течении минуты ямки растут, все глубже впячивают­ ся, втягиваются в клетку и затем, сужаясь у основания, отщепляются, образуя окаймленные пузырьки. Установлено, что из плаз­ матической мембраны фиброблас тов в течении одной минуты отщеп­ ляется примерно четвертая часть мембраны в виде окаймленных пу­ зырьков. Пузырьки быстро теряют свою кайму и приобретают способ­ ность сливаться с лизосомой.

Эндоцитоз может быть неспецифическим (конститутивным) и специфическим (рецепторным). При неспецифическом эндоцитозе клетка захватывает и поглощает совершенно чуждые ей вещества, например, частицы сажи, красители. Вначале происходит осаждение частиц на гликокаликсе плазмалеммы. Особенно хорошо осаждаются (адсорбируются) по­ ложительно заряженные группы белков, так как гликокаликс несет отрицательный заряд. Затем изменяется морфология клеточной мембраны. Она может либо погружаться, образуя впячивания (инвагинации), либо, наоборот, формировать выросты, которые как бы складываются, отделяя небольшие объемы жидкой среды. Образование инвагинаций более характерно для клеток кишечного эпителия, амеб, а выростов - для фагоцитов и фибробластов. Заблокировать эти процессы можно ингибиторами дыхания. Образовавшиеся пузырьки - первичные эндосомы, могут сливать­ ся между собой, увеличиваясь в размере. В дальнейшем они соеди­няются с лизосомами, превращаясь в эндолизосому - пищеваритель­ ную вакуоль. Интенсивность жидкофазного неспецифического пиноцитоза до­ вольно высока. Макрофаги образуют до 125, а клетки эпителия тонко­ го кишечника до тысячи пиносом в минуту. Обилие пиносом приво­дит к тому, что плазмалемма быстро тратится на образование множе­ ства мелких вакуолей. Восстановление мембраны идет довольно быс­ тро при рециклизации в процессе экзоцитоза за счет возвращения ва­ куолей и их встраивания в плазмалемму. У макрофагов вся плазмати­ ческая мембрана замещается за 30 минут, а у фибробластов за 2 часа.

Более эффективным способом поглощения из внеклеточной жид­ кости специфических макромолекул является специфический эн доцитоз (опосредуемый рецепторами). Макромолекулы при этом связываются с комплементарными рецепторами на поверхности клетки, накапливаются в окаймленной ямке, и затем, образуя эндосому, погружаются в цитозоль. Рецепторный эндоцитоз обеспечи­вает накопление специфических макромолекул у своего рецептора. Молекулы, которые связываются на поверхности плазмалеммы с рецеп­ тором, называются лигандами. При помощи рецепторного эндоцитоза во многих живот­ных клетках идет поглощение холестерина из внеклеточной среды.

Плазмолемма принимает участие в выведении веществ из клетки (экзоцитоз). В этом случае вакуоли подходят к плазмолемме. В местах контактов плазмолемма и мембрана вакуоли сливаются и содержимое вакуоли поступает в окружающую среду. У некоторых простейших места на клеточной мембране для экзоцитоза заранее предопределены. Так, в плазматической мембране некоторых ресничных инфузорий есть определенные участки с пра­вильным расположением крупных глобул интегральных белков. У мукоцист и трихоцист инфузорий полностью готовых к секреции, на верхней части плазмалеммы имеется венчик из глобул интегральных белков. Этими участками мембраны мукоцист и трихоцист соприка­ саются с поверхностью клетки. Своеобразный экзоцитоз наблюдается в нейтрофилах. Они спо­ собны при определенных условиях выбрасывать в окружающую сре­ ду свои лизосомы. При этом в одних случаях образуются небольшие выросты плазмалеммы, содержащие лизосомы, которые затем отры­ваются и переходят в среду. В других случаях наблюдается инваги­нация плазмалеммы вглубь клетки и захват ею лизосом, распложен­ ных далеко от поверхности клетки.

Процессы эндоцитоза и экзоцитоза осуществляется при участии связанной с плазмолеммой системы фибриллярных компонентов цитоплазмы.

Рецепторная функция плазмалеммы. Это одна из главных, универсальных для всех клеток, является ре цепторная функция плазмалеммы. Она определяет взаимодействие клеток друг с другом и с внешней средой..

Все многообразие информационных межклеточных взаимодей­ствий схематически можно представить как цепь последовательных реакций сигнал-рецептор-вторичный посредник-ответ (концепция сигнал-ответ). Передачу информации от клетки к клетке осуществляют сигналь­ ные молекулы, которые вырабатываются в одних клетках и специ­ фически влияют на другие, чувствительные к сигналу (клетки-ми­шени). Сигнальная молекула - первичный посредник связыва­ ется с находящимися на клетках-мишенях рецепторами, реагирую­щими только на определенные сигналы. Сигнальные молекулы -лиганды- подходят к своему рецептору как ключ к замку. Лиганда- ми для мембранных рецепторов (рецепторов плазмалеммы) явля­ ются гидрофильные молекулы, пептидные гормоны, нейромедиа- торы, цитокины, антитела, а для ядерных рецепторов - жирораство­римые молекулы, стероидные и тиреоидные гормоны, витамин Д В качестве рецепторов на поверх­ ности клетки могут выступать белки мембраны или элементы гликокалик- са - полисахариды и гликопротеиды. Считается, что чувствительные к от­ дельным веществам участки, разбро­ саны по поверхности клетки или со­ браны в небольшие зоны. Так, на по­ верхности прокариотических клеток и клеток животных имеется ограни­ ченное число мест с которыми могут связываться вирусные частицы. Мем­ бранные белки (переносчики и кана­ лы) узнают, взаимодействуют и пере­ носят лишь определенные вещества. Клеточные рецепторы участвуют в пе­ редаче сигналов с поверхности клет­ки внутрь ее. Разнообразие и специфичность набо­ ров рецепторов на поверхности клеток ведет к созданию очень сложной систе­ мы маркеров, позволяющих отличать свои клетки от чужих. Сходные клетки взаимодействуют друг с другом, поверх­ности их могут слипаться (конъюгация у простейших, образование тканей у мно­гоклеточных). Клетки не воспринимаю­ щие маркеры, а также отличающиеся на­ бором детерминантных маркеров унич­ тожаются или отторгаются. При образовании комплекса рецептор-лиганд активируются трансмембранные белки: белок преобразователь, белок усилитель. В результате рецептор изменяет свою конформацию и взаимодейству­ ет с находящимся в клетке предшественником вторичного посредни­ ка - мессенджером. Мессенджерами могут быть ионизированный кальций, фосфолипа за С, аденилатциклаза, гуанилатциклаза. Под влиянием мессенджера происходит активация ферментов, участвующих в синтезе циклических монофосфатов - АМФ или ГМФ. Последние изменяют актив­ ность двух типов ферментов протеинкиназ в цитоплазме клетки, веду­щих к фосфорилированию многочисленных внутриклеточных белков.

Наиболее распространено образование цАМФ, под действием ко­ торого усиливается секреция ряда гормонов - тироксина, кортизона, прогестерона, увеличивается распад гликогена в печени и мышцах, частота и сила сердечных сокращений, остеодеструкция, обратное всасывание воды в канальцах нефрона.

Активность аденилатциклазной системы очень велика - синтез цАМФ приводит к десяти тысячному усилению сигнала.

Под действием цГМФ увеличивается секреция инсулина подже­лудочной железой, гистамина тучными клетками, серотонина тром­ боцитами, сокращается гладкомышечная ткань.

Во многих случаях при образовании комплекса рецептор-лиганд происходит изменение мембранного потенциала, что в свою очередь приводит к изменению проницаемости плазмалеммы и метаболичес­ ких процессов в клетке.

На плазматической мембране находятся специфические рецеп­торы, реагирующие на физические факторы. Так, у фотосинтезирующих бактерий на поверхности клетки располагаются хлорофиллы, реагирующие на свет. У светочувствительных животных в плазмати­ ческой мембране находится целая система фогорецепторных белков- родопсинов, с помощью которых световой раздражитель трансфор­ мируется в химический сигнал, а затем электрический импульс.

3. Межклеточные контакты

У многоклеточных животных организмов плазмолемма принимает участие в образовании межклеточных соединений , обеспечивающих межклеточные взаимодействия. Различают несколько типов таких структур.

§ Простой котакт. Простой контакт встречается среди большинства прилежащих друг к другу клеток различного происхождения. Представляет собой сближение плазмолемм соседних клеток на расстояние 15-20 нм. При этом происходит взаимодействие слоев гликокаликса соседних клеток.

§ Плотный (замыкающий) контакт. При таком соединении внешние слои двух плазмолемм максимально сближены. Сближение настолько плотное, что происходит как бы слияние участков плазмолемм двух соседних клеток. Слияние мембран происходит не по всей площади плотного контакта, а представляет собой ряд точечных сближений мембран. Роль плотного контакта заключается в механическом соединении клеток друг с другом. Эта область непроницаема для макромолекул и ионов и, следовательно, она запирает, отграничивает межклеточные щели (и вместе с ними собственно внутреннюю среду организма) от внешней среды.

§ Пятно сцепления, или десмосома. Десмосома представляет собой небольшую площадку диаметром до 0,5 мкм. В зоне десмосомы со стороны цитоплазмы находится область тонких фибрилл. Функциональная роль десмосом в основном заключается в механической связи между клетками.

§ Щелевой контакт, или нексус. При таком типе контакта плазмолеммы соседних клеток на протяжении 0,5-3 мкм разделены промежутком в 2-3 нм. В структуре плазмолемм располагаются специальные белковые комплексы (коннексоны). Одному коннексону на плазматической мембране клетки точно противостоит коннексон на плазматической мембране соседней клетки. В результате образуется канал из одной клетки в другую. Коннексоны могут сокращаться, изменяя диаметр внутреннего канала, и тем самым участвовать в регуляции транспорта молекул между клетками. Этот тип соединения встречается во всех группах тканей. Функциональная роль щелевого контакта заключается в переносе ионов и мелких молекул от клетки к клетке. Так, в сердечной мышце возбуждение, в основе которого лежит процесс изменения ионной проницаемости, передается от клетки к клетке через нексус.

§ Синаптический контакт,или синапс. Синапсы - участки контактов двух клеток, специализированных для односторонней передачи возбуждения или торможения от одного элемента к другому. Этот тип соединений характерен для нервной ткани и встречается как между двумя нейронами, так и между нейроном и каким-либо иным элементом. Мембраны этих клеток разделены межклеточным пространством – синаптической щелью шириной около 20-30 нм. Мембрана в области синаптического контакта одной клетки называется пресинаптической, другой – постсинаптической. Около пресинаптической мембраны выявляется огромное количество мелких вакуолей (синаптических пузырьков), содержащих медиатор. В момент прохождения нервного импульса синаптические пузырьки выбрасывают медиатор в синаптичекую щель. Медиатор взаимодействует с рецепторными участками постсинаптической мембраны, что в конечном итоге приводит к передаче нервного импульса. Кроме передачи нервного импульса синапсы обеспечивают жесткое соединение поверхностей двух взаимодействующих клеток.

§ Плазмодесмы. Этот тип межклеточных связей встречается у растений. Плазмодесмы представляют собой тонкие трубчатые каналы, соединяющие две соседние клетки. Диаметр этих каналов составляет обычно 40-50 нм. Плазмодесмы проходят сквозь клеточную стенку, разделяющую клетки. В молодых клетках число плазмодесм может быть очень велико (до 1000 на клетку). При старении клеток их число падает за счет разрывов при увеличении толщины клеточной стенки. Функциональная роль плазмодесм заключается в обеспечении межклеточной циркуляции растворов, содержащих питательные вещества, ионы и другие соединения. Через плазмодесмы происходит заражение клеток растительными вирусами.

Специализированные структуры плазматической мембраны

Плазмолемма многих клеток животных образует выросты различной структуры (микроворсинки, реснички, жгутики). Наиболее часто на поверхности многих животных клеток встречаются микроворсинки. Эти выросты цитоплазмы, ограниченные плазмолеммой, имеющие форму цилиндра с закругленной вершиной. Микроворсинки характерны для клеток эпителиев, но обнаруживаются и у клеток других тканей. Диаметр микроворсинок составляет около 100 нм. Число и длина их различны у разных типов клеток. Значение микроворсинок заключается в значительном увеличении площади клеточной поверхности. Это особенно важно для клеток, участвующих во всасывании. Так, в кишечном эпителии на 1 мм 2 поверхности насчитывается до 2х10 8 микроворсинок.

Загрузка...