musings.ru

Найти указанные неопределенные интегралы и результаты интегрирования. Интегралы для чайников: как решать, правила вычисления, объяснение

Интегральное исчисление.

Первообразная функция.

Определение: ФункцияF(x) называетсяпервообразной функцией функцииf(x) на отрезке , если в любой точке этого отрезка верно равенство:

Надо отметить, что первообразных для одной и той же функции может быть бесконечно много. Они будут отличаться друг от друга на некоторое постоянное число.

F 1 (x) =F 2 (x) +C.

Неопределенный интеграл.

Определение: Неопределенным интегралом функцииf(x) называется совокупность первообразных функций, которые определены соотношением:

Записывают:

Условием существования неопределенного интеграла на некотором отрезке является непрерывность функции на этом отрезке.

Свойства:

1.

2.

3.

4.

Пример:

Нахождение значения неопределенного интеграла связано главным образом с нахождением первообразной функции. Для некоторых функций это достаточно сложная задача. Ниже будут рассмотрены способы нахождения неопределенных интегралов для основных классов функций – рациональных, иррациональных, тригонометрических, показательных и др.

Для удобства значения неопределенных интегралов большинства элементарных функций собраны в специальные таблицы интегралов, которые бывают иногда весьма объемными. В них включены различные наиболее часто встречающиеся комбинации функций. Но большинство представленных в этих таблицах формул являются следствиями друг друга, поэтому ниже приведем таблицу основных интегралов, с помощью которой можно получить значения неопределенных интегралов различных функций.

Интеграл

Значение

Интеграл

Значение

lnsinx+ C

ln

Методы интегрирования.

Рассмотрим три основных метода интегрирования.

Непосредственное интегрирование.

Метод непосредственного интегрирования основан на предположении о возможном значении первообразной функции с дальнейшей проверкой этого значения дифференцированием. Вообще, заметим, что дифференцирование является мощным инструментом проверки результатов интегрирования.

Рассмотрим применение этого метода на примере:

Требуется найти значение интеграла . На основе известной формулы дифференцирования
можно сделать вывод, что искомый интеграл равен
, где С – некоторое постоянное число. Однако, с другой стороны
. Таким образом, окончательно можно сделать вывод:

Заметим, что в отличие от дифференцирования, где для нахождения производной использовались четкие приемы и методы, правила нахождения производной, наконец определение производной, для интегрирования такие методы недоступны. Если при нахождении производной мы пользовались, так сказать, конструктивными методами, которые, базируясь на определенных правилах, приводили к результату, то при нахождении первообразной приходится в основном опираться на знания таблиц производных и первообразных.

Что касается метода непосредственного интегрирования, то он применим только для некоторых весьма ограниченных классов функций. Функций, для которых можно с ходу найти первообразную очень мало. Поэтому в большинстве случаев применяются способы, описанные ниже.

Способ подстановки (замены переменных).

Теорема: Если требуется найти интеграл
, но сложно отыскать первообразную, то с помощью заменыx=(t) иdx=(t)dtполучается:

Доказательство : Продифференцируем предлагаемое равенство:

По рассмотренному выше свойству №2 неопределенного интеграла:

f (x ) dx = f [ (t )]  (t ) dt

что с учетом введенных обозначений и является исходным предположением. Теорема доказана.

Пример. Найти неопределенный интеграл
.

Сделаем замену t = sinx , dt = cosxdt .

Пример.

Замена
Получаем:

Ниже будут рассмотрены другие примеры применения метода подстановки для различных типов функций.

Интегрирование по частям.

Способ основан на известной формуле производной произведения:

(uv)=uv+vu

где uиv– некоторые функции от х.

В дифференциальной форме: d(uv) =udv+vdu

Проинтегрировав, получаем:
, а в соответствии с приведенными выше свойствами неопределенного интеграла:

или
;

Получили формулу интегрирования по частям, которая позволяет находить интегралы многих элементарных функций.

Пример.

Как видно, последовательное применение формулы интегрирования по частям позволяет постепенно упростить функцию и привести интеграл к табличному.

Пример.

Видно, что в результате повторного применения интегрирования по частям функцию не удалось упростить к табличному виду. Однако, последний полученный интеграл ничем не отличается от исходного. Поэтому перенесем его в левую часть равенства.

Таким образом, интеграл найден вообще без применения таблиц интегралов.

Прежде чем рассмотреть подробно методы интегрирования различных классов функций, приведем еще несколько примеров нахождения неопределенных интегралов приведением их к табличным.

Пример.

Пример.

Пример.

Пример.

Пример.

Пример.

Пример.

Пример.

Пример.

Пример.

Интегрирование элементарных дробей.

Определение: Элементарными называются дроби следующих четырех типов:

I.
III.

II.
IV.

m,n– натуральные числа (m2,n2) иb 2 – 4ac<0.

Первые два типа интегралов от элементарных дробей довольно просто приводятся к табличным подстановкой t=ax+b.

Рассмотрим метод интегрирования элементарных дробей вида III.

Интеграл дроби вида IIIможет быть представлен в виде:

Здесь в общем виде показано приведение интеграла дроби вида IIIк двум табличным интегралам.

Рассмотрим применение указанной выше формулы на примерах.

Пример.

Вообще говоря, если у трехчлена ax 2 +bx+cвыражениеb 2 – 4ac>0, то дробь по определению не является элементарной, однако, тем не менее ее можно интегрировать указанным выше способом.

Пример .

Пример.

Рассмотрим теперь методы интегрирования простейших дробей IVтипа.

Сначала рассмотрим частный случай при М = 0, N= 1.

Тогда интеграл вида
можно путем выделения в знаменателе полного квадрата представить в виде
. Сделаем следующее преобразование:

Второй интеграл, входящий в это равенство, будем брать по частям.

Обозначим:

Для исходного интеграла получаем:

Полученная формула называетсярекуррентной. Если применить ееn-1 раз, то получится табличный интеграл
.

Вернемся теперь к интегралу от элементарной дроби вида IVв общем случае.

В полученном равенстве первый интеграл с помощью подстановки t = u 2 + s приводится к табличному, а ко второму интегралу применяется рассмотренная выше рекуррентная формула.

Несмотря на кажущуюся сложность интегрирования элементарной дроби вида IV, на практике его достаточно легко применять для дробей с небольшой степеньюn , а универсальность и общность подхода делает возможным очень простую реализацию этого метода на ЭВМ.

Пример :

Интегрирование рациональных функций.

Интегрирование рациональных дробей.

Для того, чтобы проинтегрировать рациональную дробь необходимо разложить ее на элементарные дроби.

Теорема: Если
- правильная рациональная дробь, знаменательP(x) которой представлен в виде произведения линейных и квадратичных множителей (отметим, что любой многочлен с действительными коэффициентами может быть представлен в таком виде:P (x ) = (x - a ) …(x - b ) (x 2 + px + q ) …(x 2 + rx + s ) ), то эта дробь может быть разложена на элементарные по следующей схеме:

где A i ,B i ,M i ,N i ,R i ,S i – некоторые постоянные величины.

При интегрировании рациональных дробей прибегают к разложению исходной дроби на элементарные. Для нахождения величинA i ,B i ,M i ,N i ,R i ,S i применяют так называемыйметод неопределенных коэффициентов , суть которого состоит в том, что для того, чтобы два многочлена были тождественно равны, необходимо и достаточно, чтобы были равны коэффициенты при одинаковых степенях х.

Применение этого метода рассмотрим на конкретном примере.

Пример.

Приводя к общему знаменателю и приравнивая соответствующие числители, получаем:




Пример.

Т.к. дробь неправильная, то предварительно следует выделить у нее целую часть:

6x 5 – 8x 4 – 25x 3 + 20x 2 – 76x– 7 3x 3 – 4x 2 – 17x+ 6

6x 5 – 8x 4 – 34x 3 + 12x 2 2x 2 + 3

9x 3 + 8x 2 – 76x - 7

9x 3 – 12x 2 – 51x +18

20x 2 – 25x – 25

Разложим знаменатель полученной дроби на множители. Видно, что при х = 3 знаменатель дроби превращается в ноль. Тогда:

3x 3 – 4x 2 – 17x+ 6x- 3

3x 3 – 9x 2 3x 2 + 5x- 2

Таким образом 3x 3 – 4x 2 – 17x+ 6 = (x– 3)(3x 2 + 5x– 2) = (x– 3)(x+ 2)(3x– 1). Тогда:

Для того, чтобы избежать при нахождении неопределенных коэффициентов раскрытия скобок, группировки и решения системы уравнений (которая в некоторых случаях может оказаться достаточно большой) применяют так называемыйметод произвольных значений . Суть метода состоит в том, что в полученное выше выражение подставляются поочередно несколько (по числу неопределенных коэффициентов) произвольных значений х. Для упрощения вычислений принято в качестве произвольных значений принимать точки, при которых знаменатель дроби равен нулю, т.е. в нашем случае – 3, -2, 1/3. Получаем:

Окончательно получаем:

=

Пример.

Найдем неопределенные коэффициенты:



Тогда значение заданного интеграла:

Интегрирование некоторых тригонометрических

функций.

Интегралов от тригонометрических функций может быть бесконечно много. Большинство из этих интегралов вообще нельзя вычислить аналитически, поэтому рассмотрим некоторые главнейшие типы функций, которые могут быть проинтегрированы всегда.

Интеграл вида
.

Здесь R– обозначение некоторой рациональной функции от переменныхsinxиcosx.

Интегралы этого вида вычисляются с помощью подстановки
. Эта подстановка позволяет преобразовать тригонометрическую функцию в рациональную.

,

Тогда

Таким образом:

Описанное выше преобразование называетсяуниверсальной тригонометрической подстановкой.

Пример.

Несомненным достоинством этой подстановки является то, что с ее помощью всегда можно преобразовать тригонометрическую функцию в рациональную и вычислить соответствующий интеграл. К недостаткам можно отнести то, что при преобразовании может получиться достаточно сложная рациональная функция, интегрирование которой займет много времени и сил.

Однако при невозможности применить более рациональную замену переменной этот метод является единственно результативным.

Пример.

Интеграл вида
если

функция R cosx .

Несмотря на возможность вычисления такого интеграла с помощью универсальной тригонометрической подстановки, рациональнее применить подстановку t = sinx .

Функция
может содержатьcosxтолько в четных степенях, а, следовательно, может быть преобразована в рациональную функцию относительноsinx.

Пример.

Вообще говоря, для применения этого метода необходима только нечетность функции относительно косинуса, а степень синуса, входящего в функцию может быть любой, как целой, так и дробной.

Интеграл вида
если

функция R является нечетной относительно sinx .

По аналогии с рассмотренным выше случаем делается подстановка t = cosx .

Пример.

Интеграл вида

функция R четная относительно sinx и cosx .

Для преобразования функции Rв рациональную используется подстановка

t = tgx.

Пример.

Интеграл произведения синусов и косинусов

различных аргументов.

В зависимости от типа произведения применятся одна из трех формул:

Пример.

Пример.

Иногда при интегрировании тригонометрических функций удобно использовать общеизвестные тригонометрические формулы для понижения порядка функций.

Пример.

Пример.

Иногда применяются некоторые нестандартные приемы.

Пример.

Интегрирование некоторых иррациональных функций.

Далеко не каждая иррациональная функция может иметь интеграл, выраженный элементарными функциями. Для нахождения интеграла от иррациональной функции следует применить подстановку, которая позволит преобразовать функцию в рациональную, интеграл от которой может быть найден как известно всегда.

Рассмотрим некоторые приемы для интегрирования различных типов иррациональных функций.

Интеграл вида
где
n - натуральное число.

С помощью подстановки
функция рационализируется.

Пример.

Если в состав иррациональной функции входят корни различных степеней, то в качестве новой переменной рационально взять корень степени, равной наименьшему общему кратному степеней корней, входящих в выражение.

Проиллюстрируем это на примере.

Пример.

Интегрирование биноминальных дифференциалов.

Определение: Биноминальным дифференциалом называется выражение

x m (a + bx n ) p dx

где m , n , иp – рациональные числа.

Как было доказано академиком Чебышевым П.Л. (1821-1894), интеграл от биноминального дифференциала может быть выражен через элементарные функции только в следующих трех случаях:

    Если р – целое число, то интеграл рационализируется с помощью подстановки

, где- общий знаменательm иn .

Неопределенный интеграл.
Подробные примеры решений

На данном уроке мы начнём изучение темы Неопределенный интеграл , а также подробно разберем примеры решений простейших (и не совсем) интегралов. В этой статье я ограничусь минимумом теории , и сейчас наша задача – научиться решать интегралы.

Что нужно знать для успешного освоения материала? Для того чтобы справиться с интегральным исчислением Вам необходимо уметь находить производные, минимум, на среднем уровне. Поэтому, если материал запущен, то рекомендую сначала внимательно ознакомиться с уроками Как найти производную? и Производная сложной функции . Не лишним опытом будет, если у Вас за плечами несколько десятков (лучше – сотня) самостоятельно найденных производных. По-крайне мере, Вас не должны ставить в тупик задания на дифференцирование простейших и наиболее распространенных функций. Казалось бы, при чем здесь вообще производные, если речь в статье пойдет об интегралах?! А дело вот в чем. Дело в том, что нахождение производных и нахождение неопределенных интегралов (дифференцирование и интегрирование) – это два взаимно обратных действия , как, например, сложение/вычитание или умножение/деление. Таким образом, без навыка (+ какого-никакого опыта) нахождения производных, к сожалению, дальше не продвинуться.

В этой связи нам потребуются следующие методические материалы: Таблица производных и Таблица интегралов . Справочные пособия можно открыть, закачать или распечатать на странице Математические формулы и таблицы .

В чем сложность изучения неопределенных интегралов? Если в производных имеют место строго 5 правил дифференцирования, таблица производных и довольно четкий алгоритм действий, то в интегралах всё иначе. Существуют десятки способов и приемов интегрирования. И, если способ интегрирования изначально подобран неверно (т.е. Вы не знаете, как решать), то интеграл можно «колоть» буквально сутками, как самый настоящий ребус, пытаясь приметить различные приемы и ухищрения. Некоторым даже нравится. Между прочим, это не шутка, мне довольно часто приходилось слышать от студентов мнение вроде «У меня никогда не было интереса решить предел или производную, но вот интегралы – совсем другое дело, это увлекательно, всегда есть желание «взломать» сложный интеграл». Стоп. Хватит чёрного юмора, переходим к этим самым неопределенным интегралам.

Коль скоро способов решения существует очень много, то с чего же начать изучение неопределенных интегралов чайнику? В интегральном исчислении существуют, на мой взгляд, три столпа или своеобразная «ось», вокруг которой вращается всё остальное. В первую очередь следует хорошо разобраться в простейших интегралах (эта статья). Потом нужно детально проработать урок . ЭТО ВАЖНЕЙШИЙ ПРИЁМ! Может быть, даже самая важная статья из всех моих статей, посвященных интегралам. И, в-третьих, обязательно следует ознакомиться с методом интегрирования по частям , поскольку с помощью него интегрируется обширный класс функций. Если Вы освоите хотя бы эти три урока, то уже «не два». Вам могут «простить» незнание интегралов от тригонометрических функций , интегралов от дробей , интегралов от дробно-рациональных функций , интегралов от иррациональных функций (корней) , но вот если «сесть в лужу» на методе замены или методе интегрирования по частям – то это будет очень и очень скверно.

В Рунете сейчас весьма распространены демотиваторы. В контексте изучения интегралов, наоборот, просто необходим МОТИВАТОР . Как в том анекдоте про Василия Ивановича, который и Петьку мотивировал, и Аньку мотивировал. Уважаемые лентяи, халявщики и другие нормальные студенты, обязательно прочитайте нижеследующее. Знания и навыки по неопределенному интегралу потребуются в дальнейшей учебе, в частности, при изучении определенного интеграла , несобственных интегралов , дифференциальных уравнений на 2 курсе. Необходимость взять интеграл возникает даже в теории вероятностей ! Таким образом, без интегралов путь на летнюю сессию и 2 курс БУДЕТ РЕАЛЬНО ЗАКРЫТ . Я серьезно. Вывод таков. Чем больше интегралов различных типов вы прорешаете, тем легче будет дальнейшая жизнь . Да, это займет довольно много времени, да, порой, не хочется, да, иногда «да фиг с ним, с этим интегралом, авось не попадется». Но, воодушевлять и греть душу должна следующая мысль, ваши усилия окупятся сполна! Вы будете, как орехи щелкать дифференциальные уравнения и легко расправляться с интегралами, которые встретятся в других разделах высшей математики. Качественно разобравшись с неопределенным интегралом, ВЫ ФАКТИЧЕСКИ ОСВАИВАЕТЕ ЕЩЕ НЕСКОЛЬКО РАЗДЕЛОВ ВЫШКИ .

И поэтому я просто не мог не создать интенсивный курс по технике интегрирования, который получился на удивление коротким – желающие могут воспользоваться pdf-книгой и подготовиться ОЧЕНЬ быстро. Но материалы сайта ни в коем случае не хуже!

Итак, начинаем с простого. Посмотрим на таблицу интегралов. Как и в производных, мы замечаем несколько правил интегрирования и таблицу интегралов от некоторых элементарных функций. Нетрудно заметить, что любой табличный интеграл (да и вообще любой неопределенный интеграл) имеет вид:

Сразу разбираемся в обозначениях и терминах:

– значок интеграла.

– подынтегральная функция (пишется с буквой «ы»).

– значок дифференциала. При записи интеграла и в ходе решения важно не терять данный значок. Заметный недочет будет.

– подынтегральное выражение или «начинка» интеграла.

первообразная функция .

– множество первообразных функций. Не нужно сильно загружаться терминами, самое важное, что в любом неопределенном интеграле к ответу приплюсовывается константа .

Решить интеграл – это значит найти определенную функцию , пользуясь некоторыми правилами, приемами и таблицей .

Еще раз посмотрим на запись:

Посмотрим в таблицу интегралов.

Что происходит? Левые части у нас превращаются в другие функции: .

Упростим наше определение.

Решить неопределенный интеграл – это значит ПРЕВРАТИТЬ его в определенную функцию , пользуясь некоторыми правилами, приемами и таблицей .

Возьмем, например, табличный интеграл . Что произошло? превратился в функцию .

Как и в случае с производными, для того, чтобы научиться находить интегралы, не обязательно быть в курсе, что такое интеграл , первообразная функция с теоретической точки зрения. Достаточно просто осуществлять превращения по некоторым формальным правилам. Так, в случае совсем не обязательно понимать, почему интеграл превращается именно в . Пока можно принять эту и другие формулы как данность. Все пользуются электричеством, но мало кто задумывается, как там по проводам бегают электроны.

Так как дифференцирование и интегрирование – противоположные операции, то для любой первообразной, которая найдена правильно , справедливо следующее :

Иными словами, если продифференцировать правильный ответ, то обязательно должна получиться исходная подынтегральная функция .

Вернемся к тому же табличному интегралу .

Убедимся в справедливости данной формулы. Берем производную от правой части:

– исходная подынтегральная функция.

Вот, кстати, стало понятнее, почему к функции всегда приписывается константа . При дифференцировании константа всегда превращается в ноль.

Решить неопределенный интеграл – это значит найти множество всех первообразных, а не какую-то одну функцию. В рассматриваемом табличном примере , , , и т. д. – все эти функции являются решением интеграла . Решений бесконечно много, поэтому записывают коротко:

Таким образом, любой неопределенный интеграл достаточно легко проверить (в отличие от производных, где хорошую стопудовую проверку можно осуществить разве что с помощью математических программ). Это некоторая компенсация за большое количество интегралов разных видов.

Переходим к рассмотрению конкретных примеров. Начнем, как и при изучении производной,
с двух правил интегрирования, которые также называют свойствами линейности неопределенного интеграла:

– постоянный множитель можно (и нужно) вынести за знак интеграла.

– интеграл от алгебраической суммы двух функций равен алгебраической сумме двух интегралов от каждой функции в отдельности. Данное свойство справедливо для любого количества слагаемых.

Как видите, правила, в принципе, такие же, как и для производных.

Пример 1


Решение: Удобнее переписать его на бумагу.

(1) Применяем правило . Не забываем записать значок дифференциала под каждым интегралом. Почему под каждым? – это полноценный множитель , если расписывать решение совсем детально, то первый шаг следует записать так:

(2) Согласно правилу , выносим все константы за знаки интегралов. Обратите внимание, что в последнем слагаемом – это константа, её также выносим.
Кроме того, на данном шаге готовим корни и степени для интегрирования. Точно так же, как и при дифференцировании, корни надо представить в виде . Корни и степени, которые располагаются в знаменателе – перенести вверх.

! Примечание: в отличие от производных, корни в интегралах далеко не всегда следует приводить к виду , а степени переносить вверх. Например, – это готовый табличный интеграл, и всякие китайские хитрости вроде совершенно не нужны. Аналогично: – тоже табличный интеграл, нет никакого смысла представлять дробь в виде . Внимательно изучите таблицу!

(3) Все интегралы у нас табличные. Осуществляем превращение с помощью таблицы, используя формулы: , и .
Особое внимание обращаю на формулу интегрирования степенной функции , она встречается очень часто, ее лучше запомнить. Следует отметить, что табличный интеграл – частный случай этой же формулы: .
Константу достаточно приплюсовать один раз в конце выражения (а не ставить их после каждого интеграла) .
(4) Записываем полученный результат в более компактном виде, все степени вида снова представляем в виде корней, степени с отрицательным показателем – сбрасываем обратно в знаменатель.

Проверка. Для того чтобы выполнить проверку нужно продифференцировать полученный ответ:

Получена исходная подынтегральная функция , значит, интеграл найден правильно. От чего плясали, к тому и вернулись. Знаете, очень хорошо, когда история с интегралом заканчивается именно так.

Время от времени встречается немного другой подход к проверке неопределенного интеграла, от ответа берется не производная, а дифференциал :

Кто с первого семестра понял, тот понял, но сейчас нам важны не теоретические тонкости, а важно то, что с этим дифференциалом дальше делать. Его необходимо раскрыть, и с формально-технической точки зрения – это почти то же самое, что найти производную. Дифференциал раскрывается следующим образом: значок убираем, справа над скобкой ставим штрих, в конце выражения приписываем множитель :

Получено исходное подынтегральное выражение , значит, интеграл найден правильно.

Второй способ проверки мне нравится меньше, так как приходится дополнительно рисовать большие скобки и тащить значок дифференциала до конца проверки. Хотя он корректнее или «солиднее» что ли.

На самом деле я вообще мог умолчать о втором способе проверки. Дело не в способе, а в том, что мы научились раскрывать дифференциал. Еще раз.

Дифференциал раскрывается следующим образом :

1) значок убираем;
2) справа над скобкой ставим штрих (обозначение производной);
3) в конце выражения приписываем множитель .

Например:

Запомните это. Рассмотренный приём потребуется нам очень скоро.

Пример 2

Найти неопределенный интеграл. Выполнить проверку.

Когда мы находим неопределенный интеграл, то ВСЕГДА стараемся сделать проверку , тем более, для этого есть прекрасная возможность. Далеко не все типы задач в высшей математике является подарком с этой точки зрения. Неважно, что часто в контрольных заданиях проверки не требуется, её никто, и ничто не мешает провести на черновике. Исключение можно сделать лишь тогда, когда не хватает времени (например, на зачете, экзамене). Лично я всегда проверяю интегралы, а отсутствие проверки считаю халтурой и некачественно выполненным заданием.

Пример 3

Найти неопределенный интеграл. Выполнить проверку.

Решение: Анализируя интеграл, мы видим, что у нас произведение двух функций, да еще и возведение в степень целого выражения. К сожалению, на поприще интегральной битвы нет хороших и удобных формул для интегрирования произведения и частного , .

А поэтому, когда дано произведение или частное, всегда имеет смысл посмотреть, а нельзя ли преобразовать подынтегральную функцию в сумму?

Рассматриваемый пример – тот случай, когда можно. Сначала я приведу полное решение, комментарии будут ниже.

(1) Используем старую-добрую формулу квадрата суммы , избавляясь от степени.

(2) Вносим в скобку, избавляясь от произведения.

Пример 4

Найти неопределенный интеграл. Выполнить проверку.

Это пример для самостоятельно решения. Ответ и полное решение в конце урока.

Пример 5

Найти неопределенный интеграл. Выполнить проверку.

В данном примере подынтегральная функция представляет собой дробь. Когда мы видим в подынтегральном выражении дробь, то первой мыслью должен быть вопрос: А нельзя ли как-нибудь от этой дроби избавиться, или хотя бы её упростить?

Замечаем, что в знаменателе находится одинокий корень из «икс». Один в поле – не воин, а значит, можно почленно разделить числитель на знаменатель:

Действия с дробными степенями я не комментирую, так как о них неоднократно шла речь в статьях о производной функции. Если Вас все-таки ставит в тупик такой пример, как , и ни в какую не получается правильный ответ , то рекомендую обратиться к школьным учебникам. В высшей математике дроби и действия с ними встречаются на каждом шагу.

Также обратите внимание, что в решении пропущен один шаг, а именно, применение правил , . Обычно уже при начальном опыте решения интегралов данные свойства считают само собой разумеющимися и не расписывают подробно.

Пример 6

Найти неопределенный интеграл. Выполнить проверку.

Это пример для самостоятельно решения. Ответ и полное решение в конце урока.

В общем случае с дробями в интегралах не всё так просто, дополнительный материал по интегрированию дробей некоторых видов можно найти в статье Интегрирование некоторых дробей .

! Но, прежде чем перейти к вышеуказанной статье, необходимо ознакомиться с уроком Метод замены в неопределенном интеграле . Дело в том, что подведение функции под дифференциал или метод замены переменной является ключевым моментом в изучении темы, поскольку встречается не только «в чистых заданиях на метод замены», но и во многих других разновидностях интегралов.

Очень хотелось включить еще несколько примеров в данный урок, но вот сижу сейчас, печатаю этот текст в Вёрде и замечаю, что статья уже выросла до приличных размеров.
А поэтому вводный курс интегралов для чайников подошел к концу.

Желаю успехов!

Решения и ответы:

Пример 2: Решение :


Пример 4: Решение :

В данном примере мы использовали формулу сокращенного умножения

Пример 6: Решение :


Я выполнил проверку, а Вы? ;)

Приложение

Интегралы онлайн на сайт для закрепления студентами и школьниками пройденного материала. И тренировки своих практических навыков. Полноценное решение интегралов онлайн для вас в считанные мгновения поможет определить все этапы процесса.. Всякий раз, как только приступать решать интеграл онлайн, нужно выявить его тип, без этого нельзя применять ни один метод, если не считать интеграл табличным. Не всякий табличный интеграл виден явно из заданного примера, иногда нужно преобразовать исходную функцию, чтобы найти первообразную. На практике решение интегралов сводится к интерпретированию задачи по нахождению исходной, то есть первообразной из бесконечного семейства функций, но если заданы пределы интегрирования, то по формуле Ньютона-Лейбница остается лишь одна единственная функция, к которой применять расчеты. Интегралы онлайн - неопределенный интеграл онлайн и определенный интеграл онлайн. Интеграл функции онлайн - сумма каких-либо чисел, предназначенных для их интегрирования. Поэтому, неформально, определенный интеграл онлайн является площадью между графиком функции и осью абсцисс в пределах интегрирования. Примеры решения задач с интегралами. Позвольте нам вычислить сложный интеграл по одной переменной и связать его ответ с дальнейшим решением задачи. Можно, что говорится, в лоб найти интеграл от подынтегральной функции. Любой интеграл с высокой точность определяет площадь ограниченной линиями фигуры. Это является одним из его геометрических смыслов. Этот метод облегчает положение студентов. Несколько этапов, по сути, не окажут особого влияния на векторный анализ. Интеграл функции онлайн является основным понятием интегрального исчисления.. Решение неопределенных интегралов. Согласно основной теореме анализа, интегрирование является операцией, обратной дифференцированию, чем помогает решать дифференциальные уравнения. Существует несколько различных определений операции интегрирования, отличающихся в технических деталях. Однако все они совместимы, то есть любые два способа интегрирования, если их можно применить к данной функции, дадут один и тот же результат. Наиболее простым является интеграл Римана - определенный интеграл или неопределенный интеграл. Неформально интеграл функции одной переменной можно ввести как площади под графика (фигуры, заключенной между графиком функции и осью абсцисс). Любая такая подзадача способна обосновать, что вычислить интеграл будет крайне необходимо в самом начале важного подхода. Не забудьте это! Пытаясь найти эту площадь, можно рассматривать фигуры, состоящие из некоторого количества вертикальных прямоугольников, основания которых составляют вместе отрезок интегрирования и получаются при разбиении отрезка на соответствующее количество маленьких отрезков. Решение интегралов онлайн.. Интеграл онлайн - неопределенный интеграл онлайн и определенный интеграл онлайн. Решение интегралов онлайн: неопределенный интеграл онлайн и определенный интеграл онлайн. Калькулятор решает интегралы c описанием действий подробно и бесплатно! Неопределённый интеграл онлайн для функции - это совокупность всех первообразных данной функции. Если функция определена и непрерывна на промежутке, то для нее есть первообразная функция (или семейство первообразных). Интеграл лишь определяет выражение, условия для которого задаются вами по факту возникновения такой потребности. Лучше тщательно подойти к этому делу и испытать внутреннее удовлетворение от проделанной работы. Но вычислить интеграл способ отличным от классического, порой приводит к неожиданным результатам и удивляться этому нельзя. Радует тот факт, который окажет положительный резонанс на происходящее. Список определенных интегралов и неопределенных интегралов интегралов с полным подробным пошаговым решением. Все интегралы с подробным решением в режиме онлайн. Неопределенный интеграл. Нахождение неопределенного интеграла онлайн является очень частой задачей в высшей математике и других технических разделах науки. Основные методы интегрирования. Определение интеграла, определенный и неопределенный интеграл, таблица интегралов, формула Ньютона-Лейбница. И снова найти ваш интеграл можно по таблице интегральных выражений, однако к этому еще нужно прийти, поскольку не все так просто, как может казаться на первый взгляд. Задумайтесь о выполненных зданиях раньше, чем найдутся ошибки. Определённый интеграл и методы его вычисления. Определённый интеграл онлайн с переменным верхним пределом. Решение интегралов онлайн. Любой пример, который поможет вычислить интеграл по табличным формулам, будет полезным руководством к действию для студентов любого уровня подготовки. Важнейший шаг на пути к правильному ответу.. Интегралы онлайн. Неопределенные интегралы, содержащие экспоненциальные и логарифмические функции. Решение интегралов онлайн - вы получите подробное решение для разных типов интегралов: неопределённых, определённых, несобственных. Калькулятор Определённых Интегралов вычисляет определенный интеграл онлайн от функции на промежутке с использованием численного интегрирования. Интеграл функции - аналог суммы последовательности. Неформально говоря, определённый интеграл является площадью части графика функции. Решение интеграла онлайн.. Интеграл онлайн - неопределенный интеграл онлайн и определенный интеграл онлайн. Зачастую такой интеграл определяет насколько тело тяжелее сравниваемого с ним объекта такой же плотности, и неважно, какой он формы, потому что поверхность не впитывает воду. Решение интегралов онлайн.. Интегралы онлайн - неопределенный интеграл онлайн и определенный интеграл онлайн. Как найти интеграл онлайн знает каждый студент младших курсов. На базе школьной программы этот раздел математики также изучается, но не подробно, а лишь азы такой сложной и важной темы. В большинстве случаев студенты приступают к изучению интегралов с обширной теории, которой предшествуют тоже важные темы, такие как производная и предельные переходы - они же пределы. Решение интегралов постепенно начинается с самых элементарных примеров от простых функций, и завершается применением множества подходов и правил, предложенных еще в прошлом веке и даже намного раньше. Интегральное исчисление носит ознакомительный характер в лицеях и школах, то есть в средних учебных заведениях. Наш сайт сайт всегда поможет вам и решение интегралов онлайн станет для вас обыденным, а самое главное понятным занятием. На базе данного ресурса вы с легкостью сможете достичь совершенства в этом математическом разделе. Постигая шаг за шагом изучаемые правила, например, такие как интегрирование, по частям или применение метода Чебышева, вы с легкость решите на максимальное количество баллов любой тест. Так как же все-таки нам вычислить интеграл, применяя известную всем таблицу интегралов, но так, чтобы решение было правильным, корректным и с максимально возможным точным ответом? Как научиться этому и возможно ли это сделать обычному первокурснику в кратчайшие сроки? На этот вопрос ответим утвердительно - можно! При этом вы не только сможете решить любой пример, но и достигнете уровня высококлассного инженера. Секрет прост как никогда - необходимо приложить максимальное усилие, уделить необходимое количество времени на самоподготовку. К сожалению еще никто не придумал иного способа! Но не все так облачно, как кажется на первый взгляд. Если вы обратитесь к нашему сервису сайт с данным вопросом, то мы облегчим вам жизнь, потому что наш сайт может вычислять интегралы онлайн подробно, при этом с очень высокой скоростью и безупречно точным ответом. По своей сути интеграл не определяет, как влияет отношение аргументов на устойчивость системы в целом. Лишь бы все уравновесилась. Наряду с тем как вы будете познавать азы данной математической темы, сервис может найти интеграл от любой подынтегральной функции, если этот интеграл, возможно, разрешить в элементарных функциях. В противном случае для не берущихся в элементарных функциях интегралов на практике не требуется найти ответ в аналитическом или, другими словами, в явном виде. Все вычисления интегралов сводятся к определению первообразной функции от заданной подынтегральной функции. Для этого вычисляют сначала неопределенный интеграл по всем законам математики онлайн. потом при необходимости подставляют верхний и нижний значения интеграла. Если не требуется определить или вычислить числовое значение неопределённого интеграла, то к полученной первообразной функции прибавляют константу, тем самым определяя семейство первообразных функций. Особое место в науке и вообще в любой инженерной области, в том числе механике сплошных сред, интегрирование описывает целые механические системы, их движения и многое другое. Во многих случаях составленный интеграл определяет закон движения материальной точки. Это очень важный инструмент в изучении прикладных наук. Отталкиваясь от этого, нельзя не сказать о масштабных вычислениях для определения законов существования и поведения механических систем. Калькулятор решения интегралов онлайн на сайте сайт - это мощный инструмент для профессиональных инженеров. Мы вам это однозначно гарантируем, но вычислить ваш интеграл сможем только после того, как вы введете в область подынтегральной функции корректное выражение. Не бойтесь ошибиться, все поправимо в этом деле! Обычно решение интегралов сводится к применению табличных функций из известных всем учебников или энциклопедий. Как любой другой неопределенный интеграл будет рассчитан по стандартной формуле без особых грубых нареканий. Легко и непринужденно студенты первых курсов схватывают налету изученный материал и для них найти интеграл порой занимает не более двух минут. А если студент выучил таблицу интегралов, то вообще может в уме определять ответы. Разворачивать функции по переменным относительно поверхностей изначально означает правильное векторное направление в некоторой точке абсцисс. Непредсказуемое поведение линий поверхности принимает определенные интегралы за базис в ответном источнике математических функций. Левый край шара не касается цилиндра, в который вписан круг, если смотреть срез в плоскости. Сумма маленьких площадей, разбитых на сотни кусочно-непрерывных функций есть интеграл онлайн от заданной функции. Механический смысл интеграла заключается во многих прикладных задачах, это и определение объема тел, и вычисление массы тела. Тройные и двойные интегралы участвуют как раз этих расчетах. Мы настаиваем на том, чтобы решение интегралов онлайн производилось только под наблюдением опытных преподавателей и через многочисленные проверки.. Нас спрашивают часто об успеваемости учеников, которые не посещают лекции, прогуливают их без причин, как же им удается найти интеграл самим. Мы отвечаем, что студенты народ свободный и вполне могут проходить обучение экстерном, готовясь к зачету или экзамену в комфортных домашних условиях. За считанные секунды наш сервис поможет каждому желающему вычислить интеграл от любой заданной функции по переменной. Проверить полученный результат следует взятием производной от первообразной функции. При этом константа от решения интеграла обращается в ноль. Это правило, очевидно, для всех. По мере обоснования разнонаправленных операций неопределенный интеграл зачастую сводят к разбиению области на мелкие части. Однако некоторые студенты и школьники пренебрегают данным требованием. Как всегда интегралы онлайн подробно может решить наш сервис сайт и никаких ограничений по количеству запросов нет, все бесплатно и доступно каждому. Существует не много таких сайтов, которые в считанные секунды выдают пошаговый ответ, а главное с высокой точностью и в удобном виде. В последнем примере на пятой странице домашнего задания встретилось такое, которое показывает на необходимость вычислить интеграл поэтапно. Но не нужно забывать и о том, как имеется возможность найти интеграл с помощью готового сервиса, проверенного временем и испытанного на тысячах решенных примеров в режиме онлайн. Как такой интеграл определяет движение системы, нам вполне ясно и наглядно об этом свидетельствует характер движения вязкой жидкости, которое и описывается данной системой уравнений.

А можно ли под знак дифференциала подводить нелинейную функцию? Да, если подынтегральное выражение представляет собой произведение двух множителей: один множитель — сложная функция от какой-то нелинейной функции, а другой множитель есть производная от этой нелинейной функции. Рассмотрим сказанное на примерах.

Найти неопределенные интегралы.

Пример 1 . ∫(2x + 1)(x 2 + x + 2) 5 dx = ∫(x 2 + x + 2) 5 d (x 2 + x + 2) =(x²+x+2) 6 : 6 + C.

Что представляет собой данное подынтегральное выражение? Произведение степенной функции от (х 2 + х + 2) и множителя (2х + 1), который равен производной от основания степени: (х 2 + х + 2)" = 2х + 1.

Это и позволило нам подвести (2х + 1) под знак дифференциала:

∫u 5 du=u 6 : 6+ C. (Формула 1). )

Проверка. (F (x)+ C)" =((x²+x+2) 6 : 6 + C)′=1/6 · 6 (x 2 + x + 2) 5 · (x 2 + x + 2)" =

=(x 2 + x + 2) 5 · (2x + 1) = (2x + 1)(x 2 + x + 2) 5 = f (x).

Пример 2. ∫(3x 2 – 2x + 3)(x 3 - x 2 + 3x + 1) 5 dx = ∫(x 3 – x 2 + 3x + 1) 5 d (x 3 – x 2 + 3x + 1) =

=(x³- x²+3x+1) 6 : 6 + C

И чем этот пример отличается от примера 1? Да ничем! Та же пятая степень с основанием (х 3 – х 2 + 3х + 1) умножается на трехчлен (3х 2 – 2х + 3), который является производной основания степени: (х 3 – х 2 + 3х + 1)" = 3х 2 – 2х + 3. Это основание степени мы и подвели под знак дифференциала, от чего значение подынтегрального выражения не изменилось, а затем применили ту же формулу 1). (Интегралы )

Пример 3.

Здесь производная от (2х 3 – 3х) даст (6х 2 – 3), а у нас

имеется (12х 2 – 6), то есть выражение в 2 раза большее, значит, подведем (2х 3 – 3х) под знак дифференциала, а перед интегралом поставим множитель 2 . Применим формулу 2) (лист ).

Вот что получится:

Сделаем проверку, учитывая, что:

Примеры. Найти неопределенные интегралы.

1. ∫(6х+5) 3 dx. Как будем решать? Смотрим в лист и рассуждаем примерно так: подынтегральная функция представляет собой степень, а у нас есть формула для интеграла степени (формула 1) ), но в ней основание степени u и переменная интегрирования тоже u.

А у нас переменная интегрирования х , а основание степени (6х+5) . Сделаем замену переменной интегрирования: вместо dx запишем d (6х+5). Что изменилось? Так как, то, что стоит после знака дифференциала d, по умолчанию, дифференцируется,

то d (6x+5)=6dx, т.е. при замене переменной х на переменную (6х+5) подынтегральная функция возросла в 6 раз, поэтому перед знаком интеграла ставим множитель 1/6. Записать эти рассуждения можно так:

Итак, мы решили этот пример введением новой переменной (переменную х заменили на переменную 6х+5). А куда записали новую переменную (6х+5)? Под знак дифференциала. Поэтому, данный метод введения новой переменной часто называют методом (или способом) подведения (новой переменной) под знак дифференциала .

Во втором примере мы вначале получили степень с отрицательным показателем, а затем подвели под знак дифференциала (7х-2) и использовали формулу интеграла степени 1) (Интегралы ).

Разберем решение примера 3.

Перед интегралом стоит коэффициент 1/5. Почему? Так как d (5x-2)=5dx, то, подведя под знак дифференциала функцию u=5x-2, мы увеличили подынтегральное выражение в 5 раз, поэтому, чтобы значение данного выражения не изменилось — надо было разделить на 5, т.е. умножить на 1/5. Далее, была использована формула 2) (Интегралы) .

Все простейшие формулы интегралов будут иметь вид:

∫f (x) dx=F (x)+C , причем, должно выполняться равенство:

(F (x)+C)"=f (x).

Формулы интегрирования можно получить обращением соответствующих формул дифференцирования.

Действительно,

Показатель степени n может быть и дробным. Часто приходится находить неопределенный интеграл от функции у=√х. Вычислим интеграл от функции f (x)=√x, используя формулу 1) .

Запишем этот пример в виде формулы 2) .

Так как (х+С)"=1, то ∫dx=x+C.

3) ∫dx=x+C.

Заменяя 1/х² на х -2 , вычислим интеграл от 1/х².

А можно было получить этот ответ обращением известной формулы дифференцирования:

Запишем наши рассуждения в виде формулы 4).

Умножив обе части полученного равенства на 2, получим формулу 5).

Найдем интегралы от основных тригонометрических функций, зная их производные: (sinx)"=cosx; (cosx)"=-sinx; (tgx)"=1/cos²x; (ctgx)"=-1/sin²x. Получаем формулы интегрирования 6) — 9).

6) ∫cosxdx=sinx+C;

7) ∫sinxdx=-cosx+C;

После изучения показательной и логарифмической функций, добавим еще несколько формул.

Основные свойства неопределенного интеграла.

I. Производная неопределенного интеграла равна подынтегральной функции.

(∫f (x) dx)"=f (x).

II. Дифференциал неопределенного интеграла равен подынтегральному выражению.

d∫f (x) dx=f (x) dx.

III. Неопределенный интеграл от дифференциала (производной) некоторой функции равен сумме этой функции и произвольной постоянной С.

∫dF (x)=F (x)+C или ∫F"(x) dx=F (x)+C.

Обратите внимание: в I, II и III свойствах знаки дифференциала и интеграла (интеграла и дифференциала) «съедают» друг друга!

IV. Постоянный множитель подынтегрального выражения можно вынести за знак интеграла.

∫kf (x) dx=k·∫f (x) dx, где k - постоянная величина, не равная нулю.

V. Интеграл от алгебраической суммы функций равен алгебраической сумме интегралов от этих функций.

∫(f (x)±g (x)) dx=∫f (x) dx±∫g (x) dx.

VI. Если F (x) есть первообразная для f (x), а k и b — постоянные величины, причем, k ≠0, то (1/k)·F (kx+b) есть первообразная для f (kx+b). Действительно, по правилу вычисления производной сложной функции имеем:

Можно записать:

Для каждого математического действия существует обратное ему действие. Для действия дифференцирования (нахождения производных функций) тоже существует обратное действие — интегрирование. Посредством интегрирования находят (восстанавливают) функцию по заданной ее производной или дифференциалу. Найденную функцию называют первообразной .

Определение. Дифференцируемая функция F (x) называется первообразной для функции f (x) на заданном промежутке, если для всех х из этого промежутка справедливо равенство: F′(x)=f (x) .

Примеры. Найти первообразные для функций: 1) f (x)=2x; 2) f (x)=3cos3x.

1) Так как (х²)′=2х, то, по определению, функция F (x)=x² будет являться первообразной для функции f (x)=2x.

2) (sin3x)′=3cos3x. Если обозначить f (x)=3cos3x и F (x)=sin3x, то, по определению первообразной, имеем: F′(x)=f (x), и, значит, F (x)=sin3x является первообразной для f (x)=3cos3x.

Заметим, что и (sin3x+5 )′=3cos3x , и (sin3x-8,2 )′=3cos3x , ... в общем виде можно записать: (sin3x)′=3cos3x , где С — некоторая постоянная величина. Эти примеры говорят о неоднозначности действия интегрирования, в отличие от действия дифференцирования, когда у любой дифференцируемой функции существует единственная производная.

Определение. Если функция F (x) является первообразной для функции f (x) на некотором промежутке, то множество всех первообразных этой функции имеет вид:

F (x)+C , где С — любое действительное число.

Совокупность всех первообразных F (x)+C функции f (x) на рассматриваемом промежутке называется неопределенным интегралом и обозначается символом (знак интеграла). Записывают: ∫f (x) dx=F (x)+C .

Выражение ∫f (x) dx читают: «интеграл эф от икс по дэ икс».

f (x) dx — подынтегральное выражение,

f (x) — подынтегральная функция,

х — переменная интегрирования.

F (x) — первообразная для функции f (x) ,

С — некоторая постоянная величина.

Теперь рассмотренные примеры можно записать так:

1) 2хdx=x²+C. 2) ∫ 3cos3xdx=sin3x+C.

Что же означает знак d?

d — знак дифференциала — имеет двойное назначение: во-первых, этот знак отделяет подынтегральную функцию от переменной интегрирования; во-вторых, все, что стоит после этого знака диференцируется по умолчанию и умножается на подынтегральную функцию.

Примеры. Найти интегралы: 3) 2pxdx; 4) 2pxdp.

3) После значка дифференциала d стоит х х , а р

2хрdx=рх²+С. Сравните с примером 1).

Сделаем проверку. F′(x)=(px²+C)′=p·(x²)′+C′=p·2x=2px=f (x).

4) После значка дифференциала d стоит р . Значит, переменная интегрирования р , а множитель х следует считать некоторой постоянной величиной.

2хрdр=р²х+С. Сравните с примерами 1) и 3).

Сделаем проверку. F′(p)=(p²x+C)′=x·(p²)′+C′=x·2p=2px=f (p).

Страница 1 из 1 1

Загрузка...